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Introduction

The uPD7281 incorporates a configuration which is quite different
from those of other microcomputers, and most readers may be
unfamiliar with its program development facilities. The uPD7281
Application Library is a collection of programs that provide
specific examples of programming on the uPD7281. The document is
intended as a guide to learning uPD7281 programming methods and
techniques.

This Application Library (Volume I) addresses "Binary Image
Processing,” which is one of the application areas of the
uPD7281. The applications presented in the following pages
include:

* Block Transfer
- Word Boundary Transfer
* Logical Operations
- NOT (single-operand operations)
- AND/OR/Exclusive OR (double-operand operations)
* Enlargement/Shrinking
- Simple 1/2 Shrinking
- 4-Point OR 1/2 Shrinking (Logical Addition)
- Neighboring 16-Point Addition 1/4 Shrinking (the Majority Rule)
-~ Simple Double Enlargement
- Simple Quadruple Enlargement
* Affine Transformation
* Profiling
- Horizontal
- Vertical
3 Masking
Smoothing
Thinning
Edge Detection

*»
w
1

Each example is discussed in terms of the following items:
(1) Processing
(2) Algorithm
(3) Parameters and their applicable ranges
(4) Flow graphs
(5) Tips on preparing flow graphs
(6) Assembler source listing

This Application Library explains uPD7281 programming methods.
The reader is advised to consult the following publications for
information on the uPD728l1 itself and the assembler:

(1) uPD7281 User's Manual
(2) uPD7281 Software Package Operating Manual

In addition, the following document may be helpful:
(3) uPD9305 (uPD7281 Peripheral LSI) User's Manual



Note:
This document is intended solely as an explanation of uPD7281

programming methods. The programing examples provided have not
been tested on an actual system, and no claim is made for their
validity.



Chapter 1

System Configuration

The programs included in this Application Library have been
written with the assumption that they will be executed on a
system configured as shown in Figure 1-1l. A characteristic of
this system is the use of a uPD7281 peripheral LSI, the uPD9305.
This means that a uPD9305-defined token is used in accessing the
image memory (IM). The programs presented in this document are
not directly applicable to those systems in which a uPD9305 is
not employed.

Although the programs shown in this document are written for a
single uPD7281, the uPD9305 permits the use of several uPD728ls.
Therefore, it is possible to increase the processing speed by
partitioning the memory area among several uPD728ls, each running
the same program. In such a case, the input token into the
uPD7281s should be set up in accordance with the memory area to
which it is assigned.

Figure 1-1
System Configuration
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The following is a description of image memory configuration.

shown in Figure 1-2 is an image memory configuration of the
system addressed in this document. Viewing the memory in terms
of screen display, the upper left corner of the screen
corresponds to the most significant bit (MSB); this has the
address of 0. The lower right corner the least significant bit
(LSB); this has the address FFFFH . Since there are 16 bits in a
word, if there are L words in a horizontal line, the number of
picture elements (pixels) present in that line is 16 x L dots.

In this system the addresses 0 through FFFFH comprise a screen
image (one bank). However, since the 8 high order bits of the 24
image memory address bits of the uPD9305 are not set (i.e.,
neither the bank-defining read high address or write high address
is set), it is necessary to set up a high address register in the
uPD9305 to use multiple banks. For the same reason, the
addressable memory space of these programs is addresses 0 through
FFFFH, both for source and destination images.

Figure 1-2
Image Memory Configuration

|
((
) ) [apDRess L-1]
LSB
L N
~1 ADDRESS 0 Lp
ADDRESS L

1) msB LSB

* : This image memory configuration is different from that of
the graphic display controllers uPD7220 and uPD7220A
offered by NEC.



Chapter 2

Block Transfer

In this chapter we consider a program for transferring a
specified rectangular area to another one. Although such a
transfer can be accomplished with the same results by using a
special case of the affine transformation (horizontal move), the
method described below employs a different algorithm to reduce
processing time. A discussion of word boundary transfer follows.

2.1

Word Boundary Transfer

2.1.1 Processing Explained

A word boundary transfer is a block-oriented transfer in
which a rectangular area defined by 16 horizontal dots
(comprising a word specified by the image memory address)
and 16 vertical dots are transferred as a block of data.
Although the minimum size of the transfer block (16 x 16
dots) cannot be varied, the program permits variations in
horizontal screen size L (number of words), and the number
of horizontal blocks H and vertical blocks V to be
transferred.

2.1.2 Algorithm

(1) First, the program and the constants are downloaded to
the uPD7281. This is followed by the input from the host
computer of two start-up tokens: the starting address

(STARTS) of a source image area (SRC), and the starting
address (STARTD) of the destination image area (DST).

Figure

16 DOTS (1 WORD)
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(2) One block of data (SRC data) is read vertically,
starting from the address indicated by STARTS.

(3) Simultaneously, one block of memory addresses needed
for the storage of SRC data is generated, starting at the
address indicated by STARTD.

(4) The SRC data is then written into the DST of the image
memory in accordance with the corresponding DST addresses.

(5) When all of V blocks have been transferred by repeating
this operation vertically, the process is repeated in the
horizontal direction by incrementing the horizontal address
by 1.

(6) The transfer operation is terminated when step (5) is
completed for all H blocks in the horizontal direction.

Figure 2-1
An Example of Data Transfer (for H=6, V=4)

ADDRESS OH

SRC IMAGE MEMORY

911317 |21
1014 18]22]
118{19{23
12/16)20| 24

al<]alen

alwlol~

N
\e,

DST

9 13171
10/14 18122
11{18{19]23
12]16[20]24

o [w o]

slwinl-

THE NUMBERS INDICATE THE ORDER OF BLOCKS TO BE PROCESSED.

2.1.3 Parameters and Their Applicable Ranges
<Assembler-coded parameters>
L ... Number of image memory words in horizontal direction

H ... Number of source image area words in horizontal
direction



V ... Number of source image area blocks in vertical
direction

<Start-up token-defined parameters>

STARTS: Starting address of the source image area
STARTD: Starting address of the destination image area

The allowable values of these parameters are indicated in
the table below:

T Parameter ; Applicable range i (Value set in the T
! ! ! example program) !
i L | 0 - 65535 1 (64) f
j H T| 1 - 256 T (32) T
v 1 - 256 I (32) i
j| STARTS | 0 - 65535 f (o)* I
i STARTD | 0 - 65535 E (32)* T

Although STARTS and STARTD are variables (i.e.,
addresses), they are given default values since they
are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas are input as execution tokens.

Furthermore, H and V should be defined with care, since this
program does not accommodate the switching of banks.

2.,1.4 Flow Graph Explained

A word boundary transfer is divided into the SRC processing
part and the DST processing part, as shown in Figure 2-2,

In Figure 2-2, GECB2 generates 16 (1 block) vertical
direction addresses for each of the V blocks. Upon
completion of the processing of V blocks of data in the
vertical direction, GECBl1l increments the address by 1
(corresponding to one block in the horizontal direction),
and executes GECB2 again. The GECB2 thus executed repeats
the vertical direction processing in the same manner. This
combination of vertical and horizontal processing creates a
set of addresses comprising a rectangular area of H x V
blocks.



Figure 2-2

Word Boundary Transfer Flow Graph
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The image memory data (SRC data) indicated by these
addresses are read on the SRC side and written to the output
address generated on the DST side. Futher, since data are
read on SRC and written to DST, SRC and DST are made to
synchronize their actions so that the level of QIMWRT will
not exceed 16.

<Explanation of Nodes>

GECB1/GECB3 : Generate the starting address of V
vertical blocks of the SRC/DST.
GECB2/GECB4 : Generate the addresses within the V

vertical blocks of the SRC/DST.

IMRED : Reads SRC data.

QIMWRT : Writes data to DST.

our : Indicates completion of data transfer to
the host.

CNTS, CNTD, QNOP: Synchronize processing between the SRC and
DST.

QUE1/QUE3 : Synchronize the actions of GECBl1 and GECB3

so that addresses are generated for V
blocks at a time.
QUE2/QUE4 : Synchronize the actions of GEB2 and GEB4
so that addresses are generated for one
block at a time.
Synchronizes SRC and DST to verify
completion of their processing tasks.

QUE5

2,1.5 Tips on Writing Flow Graphs

A program for word boundary data transfer is made up of an
address generation part to read from the SRC side and an
address generation part to write to the DST side. These
parts are identical except for the portion that concerns the
reading of SRC data.

The SRC processing part generates addresses and reads SRC
data from the image memory, whereas the DST processing part
is involved only in the preparation of addresses. For this
reason, the SRC part works slower than the DST part does. If
a synchronizing node (QNOP) was not provided, as in the case
of Figure 2-3(a), the DST addresses would be created one
after another asynchronously with the SRC address
generation and tokens sent by DST would cause an overflow in
the QIMWRT node. To prevent this overflow, a node, QNOP, in
Figure 2-2, is required to synchronize the SRC and DST
parts.



Figure 2-3 (a)
Overflow Caused by Difference in Processing Speeds
between SRC and DST

(qusey

S XGECB4)

COPYOR 16

I

' ID+1
LI
iD ID{T)
(CNTS) (CNTD)

(QIMWRT)

To synchronize these two processing parts, the scheme
indicated in Figure 2-3 (b) might suffice and would also
increase the processing speed. However, there are
additional considerations: the amount of time required by
the token issued to read the image memory and to make a
return trip to the uPD7281, and situations where there may
be some systems where the overflow occurs depending on the
number of uPD728l1s involved.

Figure 2-3 (b)
A Flow Graph in Which an Overflow May Occur Depending on
the Time From When the Token is Issued to Read the Image
Memory Until the Token Returns to the uPD7281

(GECB2 )|CNTGE V] |[CNTGE V KGECB4)
Bm::n [ coevam 14}
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[QUEUE
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2.1.6 Assembler Source Listing

I R R R R R R R SR R R R R R R R R R R AR R R R R R R R R R ]

H
H]
H
H

3 WORD BOUNDARY
8 i

: MODULE 1PP = 8 ;
9 EQUATE H z 512/16 ;
18° EQUATE U = 512716 ;
11} EQUATE L = 1224716 :
12 3
13: EQUATE HOST = 0 ;
14 EQUATE READ = 4 :
1S: EQUATE GRITE = 5 :
16: 3 .
17: EQUATE STARTS = ? ;
18 EQUATE STARTD = 32 ;

190 3

I IR R R R R R R R R R R R R R R R R R R R R S R D]

INPUT-OUTPUT

26: INPUT L3AG. LDAR.  ARVS AT :
§g§ OUTPUT RDAT. GDAT, WADR, PEND
gg% ;.."".“.““".".““.""“".“""
3 i LINK TABLE

GECB! (LSAl., LSa®
QUEL (NSAQQL,INRLQL
GECB2 (MSALl, M3SA@
QUE2 (IMR1Q2,NOPQ2
IMRED (INRL

36: LINK MSAQ, MSAQQLl, MSA@O

43: LINK LDAL - QUE3

38: LINK IMR1, IMR1Q2, IMR1QL

41: LINK  IMGO.  [MWOQA cuT (ARVS
420 LINK  HDA®. MDAQQ3. 4DAQO GECB3  (LDAl. LDA2
(¥DA0Q3.ARV9Q3

GEC34 (MDAl, IMDA®

QUE4 (ARV9Q4.NOPQ4

CNTD (ARV9

QNOP (IMGRBQA, [MWIQA
INURT (IN¥W@, [MWI

QUES (MDAQQ, MSA@O

ouT (OUTE

44: LINK ARVI, ARV9Q4, ARVSQ3
46: LINK IneL, IMU1QA

47: LINK NOPQ2, NOPQ4
48: LINK WDAT., WADR

11
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52: (0833580080500 0088800800888000088088808080
S83:
S4: FURCTION TABLE

ouT (READ. ©)
OUT2  (URITE. 20H. @).QUEUE (Q6. 16)
QUTI _ (HOST. @)

S8 f;'UNCTXOH [HRED
S53: FUNCTION  QINMWRT
68: FUNCTION OuT

61: FUNCTION  GECB! = COPYBK (I, 1, CNTGE (H )
62: FUNCTION GECB2 = COPYBK (16, L. CNTGE v )
63: FUNCTION GECB3 = COPYBK (1. 1), CNTGE (H )
64: FUNCTION GECB4 = COPYBK (16, L, CNTGE w )
6S: FUNCTION QUEI = QUEUE (Ql, 9]
66: FUNCTION  QuE2 = QUEUE Q2. 9]
.67: FUNCTION QUE3 = QUEUE Q3. |9
68: FUNCTION  QUE4 = QUEUE Q4. 1
69: FUNCTION  QUES = QUEUE (QS, L
78: FUNCTION CNTS = COUNT 18 )
71: FUNCTION CNTD = COUNT (16 )
72: FUNCTION  QNOP = NOP (XY )y QUEUE (QA, 1]

SEBLELSELEEREIIIIBEELLERSIBEROISEBEINELIOTES

DATA MENORY

TB: jeweeececccaccccccccccncccccaccccmaaaanan
79:

89: MEMORY QI = AREA 1 ) :
81: MEMORY Q2 = AREA (1 ) ;
82: MEMORY Q3 = AREA (1 ) ;
83: MEMORY Q4 = AREA (1 ) H
34: MEMORY QS = AREA 1 ) H
85: MEMORY Q6 = AREA (18 ) :
83: MEMORY QA = AREA (1 ) H
87:

aa: TESSSSRRLEEAEL LR LAIRERESLEEBEREERETEETS

89:

30: START

'35; DATA EXEC CIPP. LSagd, STARTS ) ;

STi DATA  EXEC  (IPP. LDAG. STARTD ;
39 END ;

12



Chapter 3

Logical Operations

NOT (Single-Operand Operation)

3.1.1 Processing Explained

The NOT operation is used in writing data, read from the
image memory source area (SRC), to the destination area
(DST) by performing bit inversions.

3.1.2 Algorithm

First the SRC starting address (STARTS) and the DST starting
address (STARTD) are received from the host computer as
input parameters, as occurs in a word boundary transfer.
Then, based on STARTS, data is read from SRC, block by
block, in the vertical direction. The data is then NOT-
operated, and the inverted data is written to the DST after
being combined with its corresponding DST addresses (as in
the case of a word boundary transfer).

Details are provided in Section 2.1, "Word Boundary

Transfer."”

3.1.3 Parameters and Their Applicable Ranges

<Assembler-Coded Parameters>

L ... Number of image memory words in horizontal direction

H ... Number of source image area words in horizontal
direction

V ... Number of destination image area blocks in vertical
direction

<Start-up token-defined parameters>

STARTS ... Source image area (SRC) starting address
STARTD ... Destination image area (DST) starting address

The values that can be assigned to these parameters are as
follows:

13



T Parameter ] Applicable range i (Value set in the T
! I | example program) |
? L | 0 - 65535 | (64) |
E H T 1 - 256 ? (32) T
] v i 1 - 256 E (32) T
] STARTS Tl 0 - 65535 I (o)* T
j STARTD Yl 0 - 65535 E (32)* T

Although STARTS and STARTD are variables (i.e.,
addresses), they are given default values since they
are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas are input as execution tokens.

Since this program has no provision for bank switching, care
should be exercised in setting the values for the parameters
H and L.

<Initial Values>

Initial values used in this program are the same as those
used in the word boundary transfer program. (See 2.1.3).

3.1.4 Flow Graph Explained

The flow graph for the NOT operation, shown in Figure 3-1,
represents the addition of SRC data NOT processing to the
word boundary transfer flow graph given in Figure 2-1,
except that the node for the COUNT instruction to ensure
synchronization during a word boundary transfer has been
removed. The method employed in the NOT operation for
synchronizing SRC and DST processing is not an ideal one
because there is a risk of an overflow occuring, depending
on the reading time of SRC data. However, for the
typical system configuration used in this example and for
those cases where image memory access time is short, the
synchronization method illustrated in the flow graph should
be igequate and should yield improvements in processing
speed.

14



Figure 3.1
A NOT (Single-Operand Operation) Flow Graph
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3.1.5 Tips on Writing Flow Graphs

The SRC and DST processing must be synchronized for logical
operations and transfer. In the absence of synchronization,
some programs can run into a situation where an excess of
data for either SRC processing or DST processing is created,
resulting in a uPD7281 QUEUE overflow. The methods used in
ensuring synchronization can vary, depending on the
particular objective pursued and the way the flow graph is
written.. Any method used, however, must meet the following
conditions:

- the work of the SRC token (the first input token) needs to
be controlled; i.e., if the second of two tokens is not
input after the first token is input, it should not be
allowed to process SRC side operations independent of another
side (DST, for example) resulting in an overflow on the
image memory write QUEUE.

- when an external token is issued from the uPD7281, such as
the image memory access token, you should take care to
preclude errors due to the amount of access time required in
the external circuits or due to the maximum number of tokens
flowing around in the external components.

3.1.6 Assembler Source Listing

P IS NSNITIININIEENNINNTENNLENEEEBEIEENES

1

28 %

3 NOT OPERATION
4: 3

]
-]

6: 3

7: MODULE [PP
8:

3

! EQUATE L
18: EQUATE H
11: EQUATE V

nuau
w
N

13: éQUATE HOST
14: EQUATE READ
1S: EQUATE WRITE

wun
»

17 EQUATE START3
18: EQUATE STARTD
198

20: iessvessssasanaessnessasessssssssebtits

[4
32

22¢ i INPUT-QUTPUT

23t

24! jeeecceccecccccccccconcaccccccaceccancann
25 INPUT  LSAG. LDAB. RDATA AT @

26: ;

27! OUTPUT RDAT. WDAT. WGADR. PEND

16



TLIN
T _LINK
:TLINK
:LINK

¢ FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
: FUNCTION
: FUNCTION
: FUNCT!IOM
: FUNCTION
: FUNCTION
62: FUNCTION
: FUNCTION
64:

T1: MEMORY
2: MEMORY
¢ MENORY
74: MEMORY
75: MENORY

33: START

3S: DATA
: DATA

38: END

LINK TASLE

M5A8.  RSAD.
IMR1.  R3A2.
LSAL
PEND
RDAT
MSAl.  MDAL
1nue
%DAG.  RDAQ,
1801, - RDA2.
LDAL
WOAT.  WADR

FUNCTION TABLE

FIMRED
FIMWRT
FOUTE
FGENI
FGENZ
FGEN3
FGENA
FQNP
FNOT
FQUEL =
FQUE2 =

U T U T

DATA MEMORY

QUE! =
QUE2 =
QUE =
QUEW =
QUEE =

START
EXEC CIPP,
EXEC C1PP,

RDAL
RDA3

SEARTESEEIISIIELIEEIERIORIIRENRIETS

NOT
QUEUE
QUEUE

AREA

LSAQ,
LDAQ,

v ;k.tttal'atttai!lt.ttc-t‘otttocitiittuoul

W en
-
e
£

FIEWRT

IXERRRRRR S

(READ. @)
(WRTIE, 20H, @).

(HOST. @),

[ 1),

(18, L)

[ 1),

(16, L.
—_RY )

)

X
(QUEL, L)
(QUEZ, 1)

TESSEEEBEEENERBEISTEEESERENREREEETNERINSS

TEEBELLIEEELEERETEELSELAESREIENBERENERSS

STARTS )
STARTD )
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(INJe.

QUEUE
QUEUE
CNTGE
CNTGE
CHNTGE
CNTGE
QUEUE

LSAR
MSAQ
RSA3
RDAL

RDAZ

LDAQ
4DAQ
RDA3
L
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3.2 AND, OR, Exclusive OR (Double-Operand Operations)

3.2.1 Processing Explained

Given SRC1l and SRC2 as source image areas, these operations
perform the specified operation (AND, OR, or Exclusive OR)
between the data in these areas and outputs the resultant
data to the destination image area. As in the case of the
word boundary data transfer (discussed in 2.1), each of the
areas, SRC1l, SRC2, and DST, in this program are divided into
word-aligned horizontal 16-dot (1 word) and vertical 1l6-dot
(16 lines) rectangular areas (blocks) as units of data
transfer., For the order of processing, refer to Section
2.1, "Word Boundary Transfer.”

3.2.2 Algorithm

The starting read addresses S1ADR and S2ADR of source image
areas SRC1l and SRC2, respectively, and the starting address
DSTADR of destination image area DST are input from the host
computer into the uPD7281 as part of a token. Then, one
block of addresses are generated for each S1ADR and S2ADR,
and the contents of the image memory at those addresses are
read. Data in the two blocks just read are operated upon
(AND, OR, or Exclusive OR) in conjunction with their
corresponding data, resulting in the creation of DST data.
The DST data are written out to the DST addresses generated
on the basis of DSTADR.

3.2,3 Parameters and Their Applicable Ranges

Assembler-coded parameters:

L ... Number of image memory words in horizontal direction

H ... Number of source image area words in horizontal
direction

V ... Number of source image area blocks in vertical
direction

Start-up token-defined parameters:
S1ADR ... First operand source image area (SRC1l) starting
address
S2ADR ... Second operand source image area (SRC2) starting
©  address
DSTADR .. Destination image area (DST) starting address

The allowable values of these parameters are as follows:

18



T Parameter T Applicable range i (Value set in the T
| ! ! example program) 1
x L 1 0 - 65535 1 (64) I
I H 1 1 - 256 1 (16) E
i v 1 - 256 I (16) 1
E S1ADR Tl 0 - 65535 1 (o* I
| s2DR | 0-65535 |  (4000m)* 1
E DSTADR T| 0 - 65535 Y (o0)* I

Although STARTS and STARTD are variables (i.e.,
addresses), they are given default values since they
are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas are input as execution tokens.

Since no provision is made in this program for switching
banks, you should exercise care in setting values for
parameters H and V.

<Initial Values>

Most of the initial values used in this program are the same
as those used in the word boundary transfer program, except
that initial values need to be assigned to the two SRC
addresses.

3.2.4 Flow Graph Explained

This program illustrates the use of the OR operation. To use
AND or Exclusive OR, change "OR" to "AND" or "XOR" (XOR is
the instruction code for the Exclusive OR operation) in the
FQOR node in Figure 3-2,

<Explanation of Nodes>
FGEN1/FGEN3 : Creates H blocks of horizontal starting

addresses on the basis of the starting
addresses S1ADR/S2ADR for SRC1l/SRC2.

FGEN2/FGEN4 : Creates V blocks of in-block addresses
on the basis of addresses sent from
FGEN1/FGEN3.

FIMRD1/FIMRD2 : Reads the contents of SRC1/SRC2 on the
basis of addresses created in
FGEN2/FGEN4.

FQOR : Creates DST data by performing the OR

19



FGENS

FGEN6

FIMWRT
FQUE1l/FQUE2/FQUE3 :

FQNP1/FQNP2/FQNP3 :

between the data read in FIMRD1l and
FIMRD2.

Creates H blocks of DST horizontal
starting addresses on the basis of the
DST starting address DSTADR

Creates V blocks of in-block DST
addresses on the basis of addresses
generated in FGENS.

Writes DST data created in FQOR to the
DST addresses generated in FGEN6.
Synchronizes the actions of
FGEN1/FGEN3/FGEN5 so that they make V
blocks worth of addresses at a time.
Synchronizes the actions of SRC and DST
processing whenever one block of
addresses are created in FGEN2, FGEN4,
or FGEN6.

Figure 3-2

A Double-Operand Operation Flow Graph (OR)

SRC PROCESSING ~e—tfupceeeee DST PROCESSING

r T A
] SRC1 Pm: SRC2 PART |
1
1
('s1aDR) ! ! (' DSTADR )
H ]
i 1
! SKCH11 SRCHI2 ! ! DSTHI DSTH2
| . ( FQUEL) ! 1
[cNTGE H QUEUE ' ! N TcnrGe v L_Queyi
coPYBK 1 |d=t } ! d
) + ; 1
]
SRCR2 ! |
SRCV1iL 1 1 : ' DSTVL
SRCR12 : !
] ]
( FGEN: =1 1
Dlevtee V] " TroeNe) ! (FGENS )|
' copYek 1s_| 4L ' ]
+ 1
‘. 1D |ED*2  sRrcha J DSTR4
1 i DSTR3
! OTRDY SRCR3 | L
'
I(FL
|.( MROU) oot (FIMRD2 )f~gmeT EUE
: Nop ¢ FONPL)
1 | RDAT1 _ | RDATZ RNOP1IQNOP?]
QOR1 JoP
L QORO(st 0) &)1 compuratron —
- | PART

Fe——- B . QUEUE | ronp3)
! H EETTIN
I(raom) [_QUEUE | | Y
' OR H ‘

-

oTWTO

1
(FLuMwaT) [QuEus |
N4
| |
) ]
WDAT WADR
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3.2.5 Tips on Writing Flow Graphs

This program is basically the same as the word boundary
transfer program in 2.1, except for minor differences that
exist in the synchronization method because of the need to
access three areas.

3.2.6 Assembler Source Listing
12 39088880009 8808800808800533088803888088808080
2: s
R LOGICAL OPERATION
5! jececcececccecmaesanan weefaiadinsaniiien
:

7: NODULE IPP = 8 3
8: &

9: EQUATE L = 64 ;
19: -EQUATE H = 16 :
xéz EQUATE Vv = 16 ;
120 5

13: EQUATE HOST = ] 3
14: EQUATE READ = 4 :
12: EQUATE URITE = s :
16: &

17: EQUATE SI1ADR = ] ;
18: EQUATE S2ADR = 2564L ;
19: EQUATE DSTADR = ] :
20

SEEEBEEEEEBEIORNEESEEEBBREEIRNRSEEUNENS

INPUT-QUTPUT

: INPUT  SRCHIL., SRCH21, DSTH! i
¢ INPUT  QORO AT @ §
INPUT® QORL AT I i

: 6UTPUT RDAT!., RDAT2. WDAT. WADR, PEND i

H
F4: IEEeEEEEFEINEEIIELASEELAILEIANISSEILINEITTS

36: LINK TABLE

FGEN1 (SRCH12,SRCH!L1
FGEN2  (SRCV12,SRCV1L
FQUE! (SRCRL, SRCR4
FUAN ( »SRCR2
FINRD1 (OTROD!

FQNP2 (SRCR3. QHOP!
FGEN3  (SRCH22,SRCH21
FGEN4  (SRCV22,SRCV2{
FQUE2 (SRCRS. SRCR8
( -SRCRS
FIMRDZ (QTRD2

FQNPL (SRCR7, DSTR3
FQOR (QOR®, QOR!
FQNP3 (QNOP3, QNOP2
FGENS  (DSTH2, DSTH!
FGEHNS8 (0STV2, DSTVI
FQUE3 (DSTRL,» DSTR4
FVAN 4 .DSTR2
FIMURT (OTUTA. OTWTL
FOUTE  (OUTH

402 LINK SRCV1l, SRCRL, SRCR2
4t: LINK OTRO!, SRCR3. SRCR4

49} LINK  OUTH = FUAN

45 LINK  SRCVI2, QNOP3
46: LINK  SRCV21. SRCRS. SRCRE
47: LINK  OTROZ2. SARCRT. SRCR8

S1: LINK QHOPL, QNOP2

53; LINK SRCV22, D3TV2
S4: LINK pSTVL., DSTRI. DSTR2
S§S: LINK OTWT!. DSTR3. DSTR4

L R R R

555 LINK WDAT. WADR
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Bl: 1868806800500 0808088¢0008888880808080888000808
62:

63: FUNCTION TABLE

64:

6S: ceecsccccncace eeeeececcconccccccaaa

66: ¢

67: FUNCTION FINRDL = ouTlL C(READ,» 9

68: FUNCTION FIMRD2 = OUTI (READ, 1)

69: FUNCTION FINWRT = OUT2 (WRTIE., 20H., @),QUEUE (QUEW,
7@: FUNCTION FOUTE = ouT! (HOST, Q)

71: FUNCTION FGENL = COPYBK (1. 1)s  CNTGE (H

72: FUNCTION FGEN2 = COPYBK (18, L)»  CNTGE (Vv

73: FUNCTION FGEN3 = COPYBK (1., 1>+ CNTGE (H

74: FUNCTION FGEN4 = COPYBK (16, L>s CNTGE «(V

7S: FUNCTION FGENS = COPYBK (1. 1)+ CNTGE (H

76: FUNCTION FGEN6 = COPYBK (18, L), CNTGE (Vv

77: FUNCTION FQOR = OR X ) QUEUE (QUEOR.,
78: FUNCTION FQNPL =  NOP XY >+ QUEUE  (QUENL,
79: FUNCTION FANP2 =  NOP (XY )>»  QUEUE  (QUEN2,
80: FUNCTION FQNP3 = NOP XY ). QUEUE (QUEN3,
81: FUNCTION FQUEI = QUEUE  (QUEL, 1)

82: FUNCTION FQUE2 = QUEUE  (QUE2, D

83: FUNCTION FQUE3 = QUEUE  (QUE3, 1

84: FUNCTION FVAN = WRCYCS (WTVAN, 3)

as: 3

86: ISR EERRSIERBLESEEERSAESEEEEENERERRRESS

a7

88: DATA MEMORY

89:

QB! jeececcccccccaccccccccccnccccccccacaaaaax

9l:

92: MEMORY QUEL = AREA [} ) {

93: MEMORY QUE2 = AREA [§} ) i

94: MEMORY QUE3 = AREA 1 ) H

9S: MEMORY QUENI = AREA (1 ) ;

96: MEMORY GQUEN2 = AREA 1 ) i

97: MEMORY QUEN3 = AREA 1 ) ;

98: MEMORY QUEOR = AREA (16 ) H

99: MEMORY QUEW = AREA 18 ) ;

100: MEMORY WTVAN = AREA (3 ) H

1a1:

102: IESSEENEESEEEEEEENEESEEREEEREENEROIBEIEEETETS

183:

START

118: DATA  EXEC  (IPP. SRCHIl. SIADR ;
111 DATA  EXEC  (IPP, SRCH21, S2A0R ) ;
112: DATA  EXEC  (IPP, DSTHl, DSTADR » ;
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Chapter 4

Enlargement and Shrinking

Simple One-Half Shrinking
4.1.1 Processing Explained
Simple one-half shrinking means a shrinking by simple

elimination of source image area (SRC) data, as shown in the
figure below.

Figure 4-1
Simple One-Half Shrinking

a va A VA
E | M i
N T
g 7 % /1/ /// APTER THE SHRINK
V. // ¥,
> b l'
V. /
—s DOTS ELIMINATED
X pots

D —» DOTS REMAINING

4.1.2 Algorithm

Since all that is involved is a simple elimination, data are
read vertically by skipping every other line. Horizontally,
16-bit data that are read are subjected to elimination by
looking up an elimination rule table. To avoid the problem
of handling a large 16-bit table, the data are divided into
high-order and low-order 8-bit segments. A 256-word (8-bit
address) elimination rule table is provided for each of
these segments. The use of the 256-word table results in 4-
bit data. Four pieces of such 4-bit data are written to the
destination image area (DST) as one word (See Figure 4-2).
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Figure 4-2
Algorithm for Simple One-Half Shrinking
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3 Ca 017

L_J
@ Ll r RECONSTRUCT INTO ONE WORD
] " ]

—— —
(16 BITS)

" YT A

'
.

@

ELIMINATION RULE TABLE

4.1.3 Parameters and Their Applicable Ranges

<Assembler-coded parameters>

L ... Number of image memory words in horizontal direction

H ... Number of destination image area (DST) words in
horizontal direction

M ... Number of destination image area (DST) lines in
vertical direction

<Start-up token-defined parameters>

STARTS ..., Source image area (SRC) starting address
STARTD ..., Destination image area (DST) starting address

The allowable values of these parameters are indicated in
the table below.
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T Parameter TI Applicable range %l (Value set in the I
! l | example program) l
1 L i 0 -32767 | (64) |
I 1-16 I (16) 1
1 Moo 1 - 256 1 (256) I
| STARTS T| 0 - 65535 Tl (0)* I
j STARTD | 0 - 65535 | (32) * 1

* : Although STARTS and STARTD are variables (i.e.,
addresses), they are given default values since they
are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas are input as execution tokens.

Since no provision is made in this program for switching
banks, you should exercise care in setting the values of
parameters H and M. The maximum allowable values of these
parameters in this program are H=16 and M=256; in other
words, the maximum size of a destination image that can be
reduced is 16 words horizontally and 256 lines vertically.

<Initial Values>

In setting initial values, the horizontal size of a SRC to
be shrunk is defined in an even number of words, and the
vertical size is defined in an even number of lines. Since
the process involved is a simple one-half shrinking, once
the size on the SRC side is determined, the size of the
reduced image on the DST side is determined automatically.

16 bita (1 vord) x words
' - 1 ' [
H ! ; '
H " i ’ [l
T . " 2= ivom: | 7 lines i
2y lines ! ' | $ .
] 1 ' ‘
{ H 1 1 ! !
+ T
: .

The uaits ia the horizontal
direction must always be aligned with
word boundaries.
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Notice that, because DSTs are written word by word, the
horizontal and vertical SRC definition numbers must always
be multiples of 2.

4.1.4 Flow Graph Explained

This program consists of a SRC processing part (which reads
every other line of the SRC data and creates shrunken data),
and .a DST part (which creates addresses necessary for
writing the shrunk data). Shrunk data is generated on the
basis of words of data at two contiguous addresses on the
SRC side (the first word corresponds with the high-order 8
bits, and the second word with the low-order 8 bits). The
SRC part receives from the host computer an SRC address
which indicates the starting address of the shrinking
processing, reads the SRC data horizontally every other line
starting with the given SRC address, and separates them into
high-order 8-bit and low-order 8-bit segments.

Each of the high-order 8-bit and low-order 8-bit segments is
used as an address for a look-up table to generate high-
order 4-bit and low-order 4-bit data generations. Four
pieces of the 4-bit data thus created by two SRC data are
placed in their respective bit positions to constitute DST
(shrunk) data. That is, one DST data is created by two SRC
data.

The DST processing part receives the starting address for
writing the shrunk data from the host computer and creates
write addresses on the basis of this address.

<Explanation of Nodes>

FNOPO : Synchronizes the actions of start-up tokens

received from the host computer and

indicating SRC (STARTS) and DST (STARTD)
addresses, and sends them to the SRC and DST
processing parts.

Creates line starting addresses for every

other line in order to read SRC data.

(Creates vertical addresses for every other

line on the basis of the SRC address sent

from FNOPO.)

Creates one line of SRC data addresses in

two passes, on the basis of addresses

generated in FGENl.

FOUTR : Reads the contents of SRC addresses

generated in FGEN2, i

Sends SRC data read in FOUTR alternately

(high-order and low-order 8 bits) to the DST

data generation node.

FCOP1/FCOP2 : In the generation of high-order and low-
order 8-bit data from the 16-bit data
separated by FARV1, makes two copies of the
data so that the high-order 4 bits of DST

FGEN1

FGEN2

FARV1
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FRED1/FRED3

FTRN1/FTRN3

FTRN2/FTRN4

FRED12/FREDO8

FREDO4

FADD1/FADD2

FADD3
FARV2

FGEN3

FOUTW

FADDO

FNOP1

.

data can be created from the high-order 8
bits of 16-bit SRC data, and the low-order 4
bits of DST data from the low-order 8 bits
of the SRC data.

Performs a right 8-bit shift to enable
FTRN1/FTRN3 to look up the elimination rule
data table on the basis of the high-order 8
bits of 16-bit SRC data.

Looks up the elimination rule data table on
the basis of the high-order 8 bits of 16-bit
SRC data, and creates high-order 4-bit data
for the high~order and low-order 8-bit DST
data.

Looks up the elimination rule table on the
basis of the low-order 8 bits of a second
copy of SRC data made in FCOP1l/FCOP2,
creates 4-bit elimination data for the low-
order 8 bits, and assigns them as low-order
4-bit portions of the high-order and low-
order 8-bit DST data. (4-bit data created in
FTRN4 becomes the low-order 4-bit portion of
the low-order 8-bit portion of the DST
data.)

Performs a 12/8 left shift on the 4-bit data
created in FTRN1/FTRN2 and makes them into
the high-order and low-order 4 bits of the
high-order 8-bit DST data.

Performs a 4-bit left shift on the 4-bit
data created in FTRN3 and makes it into
high-order 4 bits of the low-order 8 bits of
DST data.

Adds the data created in FRED12/FRED04 and
FREDO8/FTRN4 together and creates high-order
and low-order 8 bits of DST data.

Adds the data created in FADD1 and FADD2
together and makes them into DST data.

To enable FGEN2 to create SRC readout
addresses each time 8 DST data are
generated, notifies FQUEl that the eighth
data has been copied and that 8 DST data
have been generated.

Creates M lines of addresses for H
horizontal words starting from the DST
starting address STARTD sent from FNOPO.
Writes the reduced data generated by the SRC
processing into the DST address created in
FGEN3.

Upon completion of the generation of H words
of horizontal addresses by FGEN3, modifies
the addresses sent by FGEN3 in order to
create addresses for the next 1line.
Synchronizes the actions of FGENl and FGEN2
so that FGENl can create the starting
address of a line each time FGEN2 generates
addresses for one line of SRC data.
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FQUEl

FQUE2

Synchronizes the actions of FGEN2 and FARV2
so that SRC addresses will be created each
time 8 DST data are generated.

Synchronizes the actions of the SRC and DST
processing parts so that the DST processing
can create one line of addresses each time
the SRC processing part generates one line
of DST data.
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Figure 4-3
A Flow Graph for Simple One-Half Shrinking
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4.1.5 Tips on Writing Flow Graphs

In this program 16 SRC addresses are created for each 8 DST
data generated by FGEN2, FQUEl, and FARV2. In the absence of
FQUEl and FARV2, FGEN2 would create SRC addresses one after
another irrespective of the number of DST data generated,
filling the GQ of the uPD7281 with the tokens of SRC data
copied in FROP1 and FCOP2, leading to an overflow situation.

4.1.6 Assembler Source Listing

l' :......'.““.“.‘......‘........‘...‘...
PH
3: SHRINK 1/2
4:
S: jececmemececcecciccacccccecccceecccamanan
8
T: NODULE PP = 8 ;
9! EQUATE L = 64 :
18: EQUATE = 256 ;
11 EQUATE X = 18 ;
12¢ 3 ,
13 EQUATE HOST = 0 ;
14: EQUATE READ = 4 ;
IS: EQUATE WRITE = s ;
17! EQUATE STARTS = 0 :
18: EQUATE STARTD = 32 ;
19¢
20: iessesesussetarateansesessssstatsastsnnes
21: 3 .
22: 4 INPUT-OUTPUT
23:
240 jecmecceccciceccccccicnceccccecccnccanan
25:
281 INPUT  LSAG.  LDAD.  ARVL AT 0 ;
gg? OUTPUT RDAT. WGDAT. GADR, PEND
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v
+ FUNCTION FOUTR
¢ FUNCTION FOUTW
+ FUNCTION FOUTE
+ FUNCTION FGEN!
¢ FUNCTION FGEN2
¢ FUNCTION FGEN3
¢ FUNCTION FARV!
¢ FUNCTION FARV2
¢ FUNCTION FCOP1
¢ FUNCTION FCOP2
¢ FUNCTION FRED1
¢ FUNCTION FRED3
¢ FUNCTION FRED12
¢ FUNCTION FRED@8

+ FUNCTION FTRNL
¢ FUNCTION FTRN2

¢ FUNCTION FTRN4
¢ FUNCTION FADD@
¢ FUNCTION FADD)
+ FUNCTION FADD2

¢ FUNCTION FQUE@

H LINK TABLE

LINK PEND
LINK RDAT
LINK SRC20

P LINK  RED81. TRN4

: LINK  OUTW@. SRC4Q
: LINK  WDAT. WADR

FUNCTION FRED@4

FUNCTION FTRN3

FUNCTION FADD3

FUNCTION FNOP@
FUNCTION FNOP1

T T T T T T T T O T L L T O T L L O L T T T L L T N L]

FUNCTION FQUEL

S IEFEERNEBLBEREERBREEEIRELTERIEREERLRINNRS

= FNOP®  (LSAa,
= FGEN1 (SRC1@,
= FGEN3  (DSTi@,
= FGEN2  (SRC2@,
= FNOP1 (SRC22,
= FOUTE  (SRC23.
= FOUTR  (IMRED
= FQUE!L (SRC30,
= FARV1 (ARV1

= FCOPL (CoP1@
= FREDI (RED89
= FTRNL (TRNL

= FRED12 (RED12
= FTRN2  (TRN2

= FRED@8 (RED@8
= FADD1 (ADDLO,
= FCOP2  (COP20
= FRED3  (RED81
H] FTRN3  (TRN3
= FRED@4 (REDO4
= FTRN4  (TRN4

= FADD2  (ADD28.,
= FADD3  (ADD38.,
= FARV2  (ARV2

= FOUTW  (OUTWA,
= FADD@  (DST20
= FQUE®  (QUE2e,
(READ, @)

(WRTIE, 2@8H, @),QUEVE
(HOST, @), QUEUE
(1 2:L), CNTGE
(H,» 1) CNTGE
(H,» )y CNTGE
(2 )

(8 )

(2, [}

(2, 2

(X ) RDCYCS
(X ) RDCYCS
X ) RDCYCS
X )y ROCYCS
X ) RDCYCS
C(TRNDAT )

(TRNDAT )

(TRNDAT )

(TRNDAT )

(X ) RDCYCS
X ) QUEUE
X )y QUEUE
X ) QUEUE
(XY ) QUEUE
(XY )y QUEVE
(QUEB, L)

(QUEL, D
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DATA MENORY

R R R R R R R R R R R R R R R R R R Y ]

¢ MEMORY
MEMORY

¢ MEMORY
MEMORY
MEMORY
: MEMORY
. MEMORY
: MEMORY
¢ MEMORY
¢ MEMORY
¢ MEMORY
. MEMORY
¢ MEMORY

DATA
: DATA
144:

¢ END

MEMORY .

QUES
QUEW
QUEE
DATO4
DATO8
DAT!2
OTL
TRNDAT

START

EXEC
EXEC

nuunuunan

CIPP,
(IPP,

AREA 1 )
AREA 1 )

AREA 1 )

AREA 1 )

AREA 8 )

AREA 8 )

AREA €] )

AREA (16 )

AREA (1 )

4

8

12

L-16

@, 1, @8, 1, 2, 3, 2, 3,
4, S, 4, S, 6, T, 6, 7,
e, 1, @, 1, 2, 3, 2, 3,
4, S5, 4, S, 6, T, 6, T»

9,10.11,10.11,
12,13,12,13,14,15,14,15,
8, 9, 8, 9,10,11,10,11,
12,13,12,13,14,15,14,15,
@, 1, 8, 1, 2, 3, 2, 3,
4, S, 4, S, 6, Ty 65 T»
e, 1, 8, 1, 2, 3, 2, 3,
4- 5' 4- S, 6, 7, 6, 7»

I ]
8, PAUrALIIGI L

12 13 12,13,14,15,14,15,
8, 9, 8, 9.10,11,10.,11,
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TEEEEEEEAENERRBRREBEEREBENNENBRENEREEERS,

STARTS )
STARTD )

LSA®,
LDAQ,
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Four—-Point OR One-Half Shrinking

4.2.1 Processing Explained

In the four-point OR one-half shrinking method, the OR
operation is performed on four adjacent points in a given
source image area (SRC), and the resulting single dot is
made into destination image (DST) data, as shown in Figure
4-4.

Figure 4-4
An Example of a Four-Point OR One-Half Shrinking
(450 straight line)

’ T T T T n
- OR+ OR+ og-.ofjrl/)g; APTER THE SHRINK
-~ i 1 L
a T T U % D "y
i 7 L | VA7
B I s st 72072, 77 |
) i PIRG. ”a. ~
-owmo,)éﬁ, R+ OB LA 3
2| MR wii A
L q/m/ 4 6R+OR-+ ORA
278 - L L X/2 DOTS
X DOTS

X IS A MULTIPLE OF 32
Y IS A MULTIPLE OF 2 D —= '0' pOTS

4,2.2 Algorithm

Since the four-point OR one-half shrinking method involves
performing the OR operation on four adjacent points, the
data that would not have been useful under the Simple One-
Half Reduction method of Section 4.1 is required here. As
shown in Figure 4-5, in this program a given line and the
line following it are read one after another from the SRC in
word units, the two lines are ORed, and the results are used
to look up the OR table,
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Figure 4.5
Algorithm for the Four-Point OR One-Half Shrinking Method
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~

1 WORD (16 BITS)

4.2.3 Parameters and Their Applicable Ranges

<Assembler-coded parameters>

L ... Number of image memory words in horizontal direction

H ... Number of destination image area (DST) words in
horizontal direction

M ... Number of destination image area (DST) lines in
vertical direction

<{Start-up token-defined parameters>

STARTS ..., Source image area (SRC) starting address
STARTD ... Destination image area (DST) starting address

The allowable values of these parameters are indicated in
the table below.
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T Parameter i Applicable range i (Value set in the i
| | ! example program) 1
oL | 0 - 32767 | (64) |
i g I 1-16 | (16) 1
I 1 - 256 | (256) |
1" starrs | 0 - 65535 | (0)* |
e 1 0 - 65535 | (32)* |

Although STARTS and STARTD are variables (i.e.,
addresses), they are given default values since they
are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas are input as execution tokens.

Since no provision is made in this program for switching
banks, you should exercise care in setting the values of the
parameters H and M. Maximum values that can be assigned to
these parameters are H=16 and M=256; therefore, the maximum
size destination image that can be shrunk by this program is
16 horizontal words and 256 vertical lines.

<Initial Values>

The initial values used in this program are basically the
same as those employed in the Simple One-Half Shrinking
Method described in Section 4.1, except that the lines that
would be skipped in a simple one-half shrinking need to be
read out from the SRC and initial values must be provided
for the processing involved in the creation of these read
addresses.

4.2.4 Flow Graph Explained

The four-point OR one-half shrinking method differs from the

simple one-half shrinking method of Section 4.1 in the
following respects:

(1) With an SRC starting address (STARTS) entered, the
processing branches into two parts: A, which handles the
creation of SRC addresses for every other line, as done
during the simple one-half shrinking; and A', which creates
those addresses which are not created by A above.

(2) These two processing steps are performed in parallel,
each reading the SRC data.

(3) The two types of SRC data read in step (2) undergo an
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OR operation, followed by a table lookup and the generation
of shrunk data. The table used in this step is different
from the one employed in the simple one-half shrinking
method.

As indicated in Figure 4-6, this program consists of an SRC
processing part (which reads two lines each (word unit) of
SRC data and creates shrunk data) and an DST processing part
(which is concerned with the generation of output addresses
for the shrunk data). Each word of the shrunk data is made
from four horizontally and vertically adjacent words.

The SRC processing part receives an SRC address from the
host computer that serves as the starting point of the
shrinking processing. Starting with that address, the SRC
processing part reads two lines each of word-unit data. An
OR operation is performed between the first and second lines
of data that have been read, and the resulting data is
alternately distributed to the high-order 8-bit and the low-
order 8-bit DST data creation processing tasks.

The high-order 8-bit and the low-order 8-bit creation
processing tasks look up the OR table* on the basis of the
high-order 8-bit and low-order 8-bit values received,
respectively. Each then generates high-order 4-bit and low-
order 4-bit data. This means 8-bit shrunk data is created
by two DST words. The two 8-bit data thus generated are
placed in their respective positions within the 1l6-bit word
from which the shrunk data is generated.

The DST processing part receives a starting address from the
host computer for writing the shrunk data. It generates the
output addresses based on this address.

* : This is a 4-bit data table which is made by dividing
8-bit data into 2-bit segments and by performing an OR
on each of the segments.
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Figure 4-6

A Four-Point OR One-Half Shrinking Flow Graph
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<Explanation of

FNOPO

FCOPO

FGEN1/FGEN3

FGEN2/FGEN4

FOUTRO/FOUTR1

FOR

FARV1

FCOP1/FCOP2

FRED1, FRED3

FTRN1/FTRN2

FTRN3/FTRN4

FRED12/FREDO8

o

o

Nodes>

Synchronizes the actions of the start-up
tokens which indicate SRC (STARTS) and DST
(STARTD) addresses and sends these token to
the SRC and DST processing parts.

So that two lines each of SRC data can be
read, generates the starting address of
second line data in addition to the first
line starting address (STARTS) sent by the
host computer.

Creates the starting addresses for. odd/even
numbered lines of SRC data on the basis of
first/second line starting addresses sent
from FCOPO.

Creates addresses for SRC data lines on the
basis of the addresses generated in
FGEN1/FGEN3.

Reads the contents of addresses generated in
FGEN2/FGEN4.

Performs an OR operation between the first
and second line data read in FOUTRO and
FOUTR1.

Distributes the OR data sent from FOR
alternately between the high-order 8-bit
creation and the low-order 8-bit creation
processing tasks so that a horizontal OR can
be performed on two 16-bit data created by
performing a vertical OR (between lines), in
order to generate DST data (four-point OR
one-half shrunk data).

Make two copies of the data distributed by
FARV1 to provide for the fact that each of
the DST high-order 8-bit and DST low-order
8-bit processing steps are comprised of
high-order 4-bit and low-order 4-bit
processing tasks.

Performs a right 8-bit shift on OR data so
that a high-order 4-bit segment can be
created from the high-order 8-bit segment of
16-bit OR data by using the OR table.
Prepares 4-bit data by looking ug the OR
table on the basis of the high-order/low-
order 8-bit values of OR data (created by
dividing eight bits into 2-bit segments and
performing an OR on each of the segments).
Prepares 4-bit data by looking up the OR
table on the basis of the high-order/low-
order 8-bit values of OR data (created by
dividing eight bits into 2-bit segments and
performing an OR on each of the segments).
Prepares the high-order/low-order four bits
of the high-order 8-bit DST data by
performing a left 12/8 shift on the 4-bit
data created in FTRN1/FTRN2.
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FREDO04

FADD1

FADD2

FADD3

FARV2

FGEN5

FOUTW

FADDO

Creates the high—-order four bits of the low-
order 8-bit DST data by performing a left 4-
bit shift on the 4-bit data created in
FTRN3.

Creates the high-order eight bits of DST
data by adding together the data generated
by FRED12 and FREDOS.

Creates the low-order eight bits of DST data
by adding together the data generated by
FREDO4 and FTRN4.

Creates 16-bit DST data by adding together
the data generated by FADDl and FADD2.

For each 8 DST data sent from FADD3, makes
two copies of the data and sends one copy to
FQUEl to notify completion of the generation
of the eight DST data.

Creates M lines of addresses for H
horizontal words, starting from the DST
address (STARTD) sent from FNOPO.

Writes the DST data generated by the SRC
processing part into the DST address created
in FGEN3.

Modifies the address sent from FGEN5 in
order to address the starting address of the
next line upon completion of address
generation for H horizontal words by FGENS.

FNOP1/FNOP0, FQUEO/FQUEl

FWTCT

FCOP3

FWTVN
PEND

Regulates and synchronizes the address
generation by FGEN1/FGEN2, and FGEN3/FGEN4.
Synchronizes the actions of the SRC and DST
processing parts for each completion of SRC
and DST addresses (i.e., first and second
line addresses) for one line of DST data.
Notifies the SRC and DST processing parts of
the completion of addresses for one line of
DST data by the SRC and DST processsing
parts.

Synchronizes completion of all addresses by
the SRC and DST processing parts.

Notifies the host computer of completion of
generation for all addresses for a reduction
processing task.
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Simple One-Half Four-Point OR

| | | ]
| SRC Data | Shrinking Table | One-Half Shrinking |
) | (Note 1) I Table (Note 2) |
| Bits 76 543 210 | Table Data | Table Data ]
| 00000000 | 0000 | 0000 |
| 00000001 | 0001 | 0001 |
| 00000010 | 0000 | 0001 |
] 00000011 | 0001 | 0001 |
| 00000100 | 0010 | 0010 |
| : | : | : |
| : | : | : |
| 10111001 | 0101 | 1111 |
| 10111010 | 0100 | 1111 |
| 10111011 } 0101 = 1111 |
| H 2 H |
| 11111111 1111 | 1111 |

Note 1l: The odd-numbered bits are ignored.
7 6 5 4 3 2 1 0

Only these bits are eliminated.

Note 2: An OR is performed between the odd-numbered and
even-numbered bits.

7 6 5 4 -3 2 1 0

+ —+
+ —+
+ —+
+ -+
+—+
+ — 4+
+—+
+—+
+—+

~ /N /SN SN
OR OR OR - OR
Each of these groups is ORed.

4.2.5 Tips on Writing Flow Graphs

Although the QUEUE instruction is normally employed in
synchronizing various activities, in some cases the WRCYCS
and WRCYCL instructions are used (as in the case of the
FWTCT and FWTVN nodes in this program).

When BS (buffer size) = WC (write counter), the FTRC = 1
token does not vanish in either the WRCYCS or WRCYCL
instruction. When there are many data senders and you wish
to synchronize various actions including those of the
senders, the flow graph should be constructed in the manner
indicated in the figure below.
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WRCYCS n

SYNCHRONOUS OUTPUT

Notice that in this case n words in the DM (Data Memory)
must be assigned as dummy data.

41



4.2.6 Assembler Source Listing

S9505505508838550500888380838888880838080828

SHRINK 1/2 (4 POINT OR )

1

2

3

4:

S:

6:

T IppP = 8

8:

9: L = 64
18: n = 256
15: EQUATE H = 16
120 3
13! EQUATE HOST = [
14: EQUATE READ = 4
lgz EQUATE URITE = S
18: 3
17: EQUATE STARTS = -]
18: EQUATE STARTD = 32
190 ¢
2': I8835380¢0088808800882888888808808888888S8
21 3
228 INPUT-QUTPUT
23:

24% jeemeccccccccnccccneaanaa. ceeccccccncecanaa
25:

26: INPUT  LSA@, LDA®,

LINK TABLE

41: LINK [RED@, SRCSQ.

47 LINK  IREDI. SRCT®,
48: LINK  SRC3l, SRCBE

Si: LINC  SRC9d. SRC9I

[NOR® AT 0.

DST22
SRC42
SRC62
SRCS!

SRCT1

L L L T R R N T N T T N TR N R RN R RN

42

INORL AT 1

28: 6UTPUT RDAT@, RDAT1, WDAT, WADR, PEND

S804 58088283828880083088838088888880¢

FREDQ8

(LSAB,
(3RC1@
(DST!1.,
(SRC21,
(SRC31,
(SRCS2,
(SRC41.,
(
(IRED®
(SRCS@,
(

(SRCS4@.,
(SRC61,
(

(IRED!
(SRC79,

(
C(IMORA,
(ARVI
(CoPL@
(RED8®
(TRN1
(RED12
(TRN2
(RED@8

LDAR

DSTi0
SRC20
SRC3@
SRC48
SRCB@
»SRC42

SRCOL
»SRCS1
SRCE0@
SRCAQ
+SRC62

SRC8@
»SRCT1
IMOR!L
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Jadawn
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S0®

@0 mo®
Newn~—

[ X0 XX Xy ]
~—0®~NR

N o e e
SOO~NONEWN—®

LINK

SRCAQ.,
PEND

DST4@

LU IO U T O TN R IO TN T T LR LT ]

FADDL
FCOoP2
FRED3
FTRN3

FRED@4

FTRN4
FADD2
FADD3
FARV2
FOUTW
FADD®
FUTUN
FQUE2
FUTCT
FCOP3
FOUTE

H
(688 SSESSIEE ISR NEEEIEEEIENIINEOSSEES

FUNCTION
FUNCT[ON
FUNCTION

+ FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION

FUNCTION

¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION

FUNCTION

¢ FUNCTION
: FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
: FUNCTION
: FUNCTION
: FUNCTION
: FUNCTION

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

FUNCTION TABLE

FOUTR@
FOUTRL

FOUTW
FOUTE
FGEN1
FGEN2
FGEN3
FGEN4
FGENS
Fcore
FCOP!
FCOP2
FCOP3

FARVL.

FARV2
FREDL
FRED3

FREDL2
FREDQ8
FREDQ4

FTRNL
FTRN2
FTRN3
FTRN4
FADD®
FADDL
FADD2
FADD3
FNOP®
FNOPL
FNOP2
FQUEQ
FQUEL
FQUE2
FUTCT
FUTUN
FOR

LU L T T T U L T T T U T O O LR U LR TR LR T U U U TR LR LR D ) wnuunun

(READ,
(READ,»
(WRTIE,
(HOST.

[ B

1)
20H, 8).QUEVE

)

(1l 2+L),

(H »

1),

(3% 2sL),

(H,

(H,

2,

(2,

(2,

(2,

2

(8

X

X

X

X

X
(TRNDAT
C(TRNDAT
(TRNDAT
(TRNDAT
(XY

(QUEQ.
(QUEL.,
(QUE2,
(WRTCT.,
(URTVUN.
X
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(QUEW.

(DATOS8,
(DATO8,
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(QUES,
(QUET.,
(QUES.,
(QUE3,
(QUE4,
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:

1885000803000 8800000000080088808888008008

: MEMORY
HEMORY

+ MEMORY

MENORY

+ MENORY

HENORY

¢ NEMORY

MENORY

+ MEMORY
: MEMORY

¢ MEMORY

DATA MENORY

QUE® = AREA (1 )
QUEL = AREA [§3 )
QUE2 = AREA 8} )
QUE3 = AREA (99 )
QUE4 = AREA (1 )
QUES = AREA (L )
QUES = AREA 8 )
QUE? = AREA 8 )
QUES = AREA (8 )
QUE9 = AREA (18 )
QUEW = AREA (18 )
DATO4 = 4

DATR8 = 8

DAT12 = 12

DTL = L-H

WRTCT = AREA (3 )
WRTUN = AREA 3 )
TRNDAT = @ L, 1y 1y 2, 3, 3, 3,

4, S+ 5, 5. 6. 70 70 T
4, S, 5, 5, 6., 7, 7, 7,

4, 5, 5, S, 6, 7.7, 7, 6

» 9, 9y 9,10.1L411L,11,
12,13,13,13,14,15,15,15,
12,13,13,13,14,15,15,18,
12,13.13,13,14,15,15,15,
8,9, 9, 9,18,11,11.11,
12,13,13,13,i4,15,15.18,
12,13,13,13,14,15.:15.15,
12,13,13,13,14,15,15.15.
8, 9, 9, 9,10,11,11.11,
12,13,13,13,14,15,15.15,
12,13,13,13,14,15,15.15,
12,13,13,13,14,15,15.15,

TEBSEISLEAELIELNEEIEINIISEEREILIEIEERSERERIETS

START

EXEC  (IPP. LSA@. STARTS )
EXEC  (IPP, LDA@. STARTD )
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2, 3, 3, 3, 2, 3, 3, 3,
6y 7o 70 7. 6. 70 7, T,
6,70 T 7.6, 70 T, 7,
» To T T4 8, 70 70 7,
18, 1Ls11o0101@0t001L,11,
14,15,15,15,14,15,15,15,
14,15,15,15,14,15,15.15,
14,15,15,15.14.,15.15,15,
18, 11,10,101,100.000 00011,
i4,15,15,15,14,15.,15.15,
14,15,15,15,14,15,15,15,
14,15,15,15,14,15,15,15.
18,1000, 01,1800L000011L,
14,15,15,15,14,15,15,15,
14,15,15,15,14,15,15.15,
14,15,15,15,14.15.15,15 :



4.3

Neighboring 16-Point Addition One-Quarter Shrinking

4.3.1 Processing Explained

A one-quarter shrinking involves shrinking 4 horizontal and
4 vertical bits, for a total of 16 bits, into one bit. In
this neighboring 16-point addition reduction, the number of
"1"s in the 16-bit data are counted and shrunk data is set
to "1" if the sum is greater than a given value and "O"
otherwise.

The basic size of source image area (SRC) that can be shrunk
by this program is four horizontal words by four vertical
words, as shown in Figure 4-7. This is because the
destination image area (DST) is addressed in word units.

4.3.2 Algorithm

The number of "1"s contained in a given 16-bit data, four
bits by four lines, is counted. If the number is number is
greater than or equal to a threshold value, the shrunk data
bit is set to "1"; otherwise, it is set to "0". The counting
is done by a table lookup.

To write the DST data into image memory in l-word (16-bit)
units, (1) each of the 4 SRC data words read from the SRC is
divided into (2) high-order 8-bit and low-order 8-bit
segments to reduce the size of the table required, and (3)
the table is looked up for each segment. The contents of
this table are determined by the following method: each 8-
bit segment is further divided into high-order and low-order
4-bit subsegments, and the number of "1"s in these
subsegments is written in a word addressed by the value of
each 8-bit segment. (The table used in the example program
is 256-words x 16-bit data divided into the high-order and
low-order 8-bit parts whose contents are the number of "1"s
in the high-order and low-order 4-bits of the segment
respectively.) Then, (4) data for four vertical lines are
read from the table and added, thus tallying the number of
"1"g included in the area encompassed by four vertical lines
and four horizontal bits. Then two additive data, AB and CD
(created from the high-order eight bits and low-order eight
bits of SRC data), are divided into (5) high-order (A,C) and
low-order (B,D) eight bits. Each of these four data is
compared with the threshold value. If the number of "l1l"s is
greater than or equal to the threshold value, the shrunk
data is set to "1"; otherwise, it is set to "0"., As a
result, the four 1l-bit data are extracted as the
constituents of DST data. (6) The same processing is done on
the continuous three words and four lines, yielding 12-bit
shrunk data. This is combined with the 4-bit data from the
previous step to create the DST data.
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Figure 4-7 ) )
Algorithm for the Neighboring 16-Point Addition
One-Quarter Shrinking Method
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The generation of SRC area addresses is based on the
generation of addresses for an area defined by four
horizontal words and four vertical lines. This constitutes
the minimum unit of a shrinking processing, This basic area
is shifted horizontally (Figure 4-8 (b)). The addresses in
the basic area are generated four vertical lines at a time,
as indicated in Figure 4-8 (a).

For the generation of addresses for a DST area, one address
is created horizontally for each 16 addresses of the SRC

basic area, as shown in Figure 4-8 (c).

Figure 4-8
Order of Address Generation
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(c) ORDER OF ADDRESS GENERATION
FOR DST AREA

4.3.3 Parameters and Their Applicable Range

<Assembler-coded parameters>

L ... Number of image memory words in horizontal direction
H ... Number of source image area (SRC) words in horizontal

direction
M ... Number of source image area (SRC) lines in vertical

direction
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<Start-up token-defined parameters>

THRDAT ... Threshold value
STARTS ... Source image area (SRC) starting address
STARTD ... Destination image area (DST) starting address

The allowable values of these parameters are indicated in
the table below.

+

Parameter I Applicable range i (Value set in the T
. ! 1 example program) 1
| Lo 0 - 16383 | (64) I
1 B 1 4°- 1024%* i (32) |
E M 1 4 - 1024%* | (512) i
| mERoAT | 0-65535 | ( 8)* |
1  STARTS | 0 - 65535 T (0)* T
E STARTD T 0 - 65535 E (48)* 1

* : Although STARTS and STARTD are variables (i.e.,
addresses), they are given default values since they
are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas are input as execution tokens.

** : A multiple of 4

Since no provision is made in this program for switching
banks, you should exercise care in setting values of the
parameters H and M. Because this minimum area that can be
shrunk by this program is four horizontal words by four
vertical lines, the values of H and M must be multiples of
four.

4.3.4 Flow Graph Explained

Since, in this program the image memory is accessed in units
of 16 bits, data are written to DST in word units. This also
simplifies processing. Therefore, the SRC area is treated by
using a 4-word horizontal by 4-line vertical area as the
minimum unit,

The following explains the flow graph in Figure 4-9,

FGECl creates the addresses for every other four vertical
lines of the SRC area, starting from the SRC starting
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address (STARTS) given by the host computer. Then, FGEC2
creates four horizontal addresses from the given addresses.
Upon receipt of these addresses, FCOPB creates addresses for
four lines, making them into SRC read addresses.

FCOPl1 divides the SRC data into high-order and low-order 8-
bit segments (making two copies of the read data) so that
when the word is segmented into four bits the number of "1"s
cogfa}nea in the 4-bit segments can be counted using a
table*,

Specifically, FRTBL1 and FTTBL2 determine the number of "l1"s
contained in four 4-bit segments, the high-order and low-
order 4-bit segments of the high-order 8-bit segment
(FRTBL1), and the high-order and low-order 4-bit segments of
the low-order 8-bit segment (FTTBL2); the results of
processing four lines are distributed by FDIST1 and FDST2;
and additions are performed for the four lines by FADDS,
FADD3, FADD4, and FADD6.

* : The table represents, in eight bits, the number of "1"s
contained in the high-order 4-bit and low-order 4-bit
segments of the value that is an address to reference
the table.
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Figure 4-9

A Flow Graph of the Neighboring 16-Point Addition
One-Quarter Shrinking Method
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The high-order 8-bit and low-order 8-bit segments of the
data resulting from the addition operation indicate the
number of "1"s in the four bit by four line area and the
number of "1"s in the next area, respectively; high-order
eight bits and low-order eight bits are divided into two
words. If the value of this word is less than the value
specified in the program, 1l-bit data "0" is created and
shifted by FSHL1 through FSHL4 so as to create the
constituent of DST data. Otherwise, 1l-bit data "1" is
created and shifted in the same manner.

One DST address is created in the horizontal direction for
each 16 addresses (4 horizontal words by 4 vertical lines)
of the SRC area, using the DST starting address (STARTD)
sent from the host computer as the starting point.

When all 16 bits of DST data have been generated, they are
written to the given DST address.

4.3.5 Assembler Source Listing

I NS850 9000000008 0858008008888008

-

2 3
3: SHRINK 1/4

4:

6! ieeemecccccceccccccaccccccccccaccacacanne

6: 3

T7: MODULE IPP = 8 i

8:

9: EQUATE L = 64 ;

18: EQUATE H = 32 :

lé: EQUATE 1 = 512 ;

120 %

13: EQUATE THRDAT = 8 :

J4: EQUATE STARTS = Q i

12: EQUATE STARTD = 48 H

16:

17: EQUATE HOST = [} i

18: EQUATE READ = 4 ;

19: EQUATE WRITE = S ;

29:

:{: TEAASSENINLECEIRSEEEEEESEESEESSNSESETEIES

220 3

23: INPUT-OQUTPUT

24:

25! jeme-emececiccccccccccccceccecoccemenanan

26: .

g;: INPUT INT. LSAG, LDAQ, RDATA AT @ i

29: OUTPUT RODAT. WDAT. WADR, PEND H

38:

Sl (VR0 cae et ettt e Lt EEERIERISISIEILTSE

32t

33: ¢ LINK TABLE

34:

35! femeeeeeeececcccccaccecccecccaeeaae

36!

37: LINK = FINT CINT )
38: LINK X4, XS, X6 = FGECI (X148, Lsae )
39: LINX X7, X8, X9 = FGEC2 (X13, X4 )
4@: LINK X0 = FQUEL (XS, X3 )
41: LINK PEND = FEND (X6, XS52 b)
42: LINK Xt %12 = FCOPB (X7 )
43: LINK X13 = FQUE2 (X8, X861 )
44: LINK RDAT = FIMNRED (X! )
45: LIN = FDUST (X112 )
46: LINK X1S, X16 = FCOP| (RDATA )
470 LINK Xi7 = FSHR® (X1S )
48: LINK X18 = FRTBLL (X17 )
49: LINK X19. X20. X21. X22 = FDISTL ¢« X18 )
S@: LINK X23 = FADDL  (X19, Xx20 )
St: LINK X24 51 = FADD2  (X21, X22 )
S2: LINK X2S = FADDS (X23, %24 )
S3: LINK X26. X27 = FCOP2 (X2 )
S4: LINK X28 = FSHR! (X268 )
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181: 8201H, 0202H. 0Q2082H. 0@2@3H.

182: 9202H, @203H, @8203H., ©204H,
183: 8300H, 0301H., 0830lH, 0Q302H.
184: 9301H., 0@302H, @302H, 0Q303H.
189: 0301H, 0Q302H., ©8382H., @303H,
188: 0302H, @3@3H, 0383H., 0304H.
187: Q100H, Q@lO1H, Q101H, Ql102H.,
188: Q10lH, @102H, O@102H, O@!@3H.,
189: 0l8IH, 0Q102H, 0Q102H, ©103H,
190: Q102H, Q@l1Q3H, @103H., Q10Q4H,
191: 920QH, ©0201H, 0281H., 0202H.,
192: 9201H, 0202H, ©@202H., 0203H.
193: 8201H, ©0202H, ©0282H., ©203H.,
194: 8202H, Q2083H., 0203H., Q204H.
198: 0200H, 0201H, @201H., @202H,
196: 920LlH, 0202H, Q@202H., @203H.,
197: 0201H, ©0202H, 08202H, 0@203H,
198: 0282H, ©203H, 0203H, ©8204H,
199:. 0300H, @301H, 0301H, @302H,
290: 030iH, @3@2H, 03Q2H, G303H,
2921: 0301H. 0302H, @302H., 0@303H,
202: 9302H, 0Q303H., 0@383H, 0Q304H.,
203: 0200H, ©201H, 0Q201H., 0Q202H,
204: 0201H, 0202H, 0Q202H, @203H.
20Ss: 9201H., 0©202H, 0202H, 0203H.
226 8202H, 0Q203H, 0203H, 0204H.
207: 0300H., 0301H, ©301H, @302H.
208: @301H, @3@2H, @302H, 0Q303H,
209: 9301H, 0302H, 0302H, 030Q3H.
21@: 0302H, 0@303H., ©@3@3H, 0304H.
211 0300H, 030!1H, 030!H, ©0302H,
212: @3@tH, 0302H, @302H. @303H,
2:13: 930!H, 0302H, 0@302H, 0@30Q3H.
214: @302H, ©@3@3H, ©0303H, @304H.
218: 042@H, 0@401H, 040l1H, @402H,
216: 9401H, 0402H, 04024, 0403H.
217 9431H, 0402H, 04024, 0@403H,
218: 0402H, 0©0403H, 0G403H, 0404H
2:9:

22 M IR R R E R R R R E R R R R R R R R E F R R R R

221 %

222: START

223:

22%: START

226:

227: DATA EYEC (IPP,  INT. THRDAT )

228: DATA EXEC (IPP, LSAQ, STARTS )
229: DATA EXEC C(IPP, LDAQ, STARTD )
238:

231: END

LY}



4.4 Simple Double Enlargement

4.4.1 Processing Explained

In simple double enlargement, data is read from the the
source image area (SRC) and each bit is duplicated, as shown
in Figure 4-10, to double the data in horizontal direction.
The data 'are also written in two consecutive lines of the
destination image area (DST) to double them vertically.

Figure 4-10
Simple Double Enlargement

F———%‘ R = —
= W l/ WY

'RETCHED LENGTHWISE

WRITTEN IN TWO LINES ON THE DST SIDE

4.4.2 Algorithm

As shown in Figure 4-10, (1) one word is read from the SRC,
then (2) the word is separated into high-order 8-bit and
low-order 8-bit segments*, The SRC data divided into two 8-
bit segments (3) are used in looking up the double
enlargement table, in terms of the high-order and low-order
segment values, and become two words of 16-bit data (see
Figure 4-11). Each of two words of the 16-bit data (4) is
written to the contiguous addresses and also in the
contiguous lines of the DST. (5) This processing is
performed on all SRC data.

* : This procedure is intended to double the data by means
of a table lookup. However, if one word (16 bits) were
used directly as an address for table lookup, 65,536
locations would be required, exceeding the number of the
uPD7281 DM words (512 locations). Therefore, it is
necessary to segment the data read from the SEC into &-
bit data. 1In this case, only 256 locations are required
for a lookup table.
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Figure 4-11
An Example of Double Horizontal Enlargement

4.4.3 Parameters and Their Applicable Ranges
<Assembler-coded parameters>

L ... Number of image memory words in horizontal direction

H ... Number of source image area (SRC) words in horizontal
direction

M ... Number of source image area (SRC) lines in vertical
direction

<Start-up token-defined parameters>

STARTS ... Source image area (SRC) starting address
STARTD ... Destination image area (DST) starting address

The allowable values of these parameters are indicated in
the table below,

<+

Parameter | Applicable range

(Value set in the
example program)

| | 1
! ! ! !
j L 1 0 - 65535 1 (64) 1
1 B E 1 - 256 ? ( 8) 1
1 M T 1 - 256 i (128) T
j’";;;;;;"'j' 0 - 65535 T (0)* |
| STARTD T 0 - 65535 | (32) * 1

* : Although STARTS and STARTD are variables (i.e.,
addresses), they are given default values since they
are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas are input as execution tokens.

Since no provision is made in this program for switching

banks, you should exercise care in setting the values of
parameters H and M.
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The maximum size of source image area allowed is 256
horizontal words and 256 vertical lines.

<Initial values>

To set initial values, determine the size of the SRC to be
expanded horizontally in word units (word boundary), and the
size in vertical line units.

Since this is a double enlargement, the size of the DST
after enlargement is determined automatically once the size
of the SRC is determined.

X WORDS 2X WORDS
R Ci
! ! H T T t +
A [ T
Y LINES | | | | ! ! |
1 | I | [ |
T t | | ! | |
| I | | | | |
N——————— ! | T T T
| i | i |

2Y LINES

THE PROCESSING DONE BY WORD BOUNDARIES

4.4.4 Flow Graph Explained
A flow graph for this program is shown in Figure 4-12,

Start-up tokens indicating the starting addresses, STARTS
and STARTD, of the SRC and DST areas required in performing
the enlargement processing are received from the host
computer and sent to the SRC and DST processing parts,
respectively.

The SRC processing part creates SRC addresses on the basis
of the SRC address (STARTS) and reads the contents of these
addresses. The SRC addresses are created in FGEN1l and FGEN2
contiguously in the vertical direction starting from STARTS.
FIMRED reads the contents of the addresses thus created. Two
copies of this SRC data are made for reasons explained
above, and the values of high-order eight bits and low-order
eight bits are used in looking up the double enlargement
table, with the result being DST data. Then, FGE1l and FGE2
make two copies of the DST data to create output data for
two lines.

The DST processing part creates DST addresses on the basis
of the DST starting address (STARTD).
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Four DST addresses, consisting of two contiguous words by
two lines, must be created to write one SRC data. First,
FGEN3 and FGEN4 create addresses for every other word
horizontally and every other line vertically, starting from
STARTD. Upon receipt of these addresses, FCOP2 creates
addresses for two contiguous words. Further, FGE3 and FGE4
create two lines of addresses for two contiguous words as
the addresses for writing the DST data generated in the SRC
processing part.

The writing of the DST data is done in FIMWT1 and FIMWT2.
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Figure 4.12
A flow Chart of a Simple Double Enlargement
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FIMWT]1 writes the DST (enlargement) data representing the
high-order eight bits of the data read from SRC, and FIMWT2
writes the low-order eight bits .

4.4.5 Assembler Source Listing

$8880088808808080308083060008088088080808080038

10
2: 3

23 i ENLARGE X2

B! fememmme-n cememmmonaa cmememeeas B,

6: 3

;: MODULE IPP = 8 :

9: EQUATE L = 64 :

19: EQUATE H = 8 :

11: EQUATE 1 = 128 i

120 3

13: EQUATE HOST =z [] :

14: EQUATE READ = 4 {

1S EQUATE WRITE = 5 H

162

17: EQUATE STARTS = [] H

lg: EQUATE STARTD = 32 ;

19:
20:
2l issessesssssscssssansssasstssssnnnRne
220
23: INPUT-QUTPUT
24:
25! ieceecceccccccccccccccccacccccaccccancaana
26:
27:
28:
29: INPUT  Lsa@. LDA®, RDATA AT @ H
308:
31: OUTPUT RDAT., WDATLI, UWADRL1, WDAT2., WADR2. PEND H
32:

33 isessussssasssssssssssanettsnstessattanes

LINK TABLE

40: LINK SRCML, SRCM2, SRCNM3
41: LINK [MRED., SRCRL, SRCR2
42 LINK SRCL@®

FGENI (SRCL®, LSA®

FGEN2 (3RCHG, SRCMI
FQUEQ (SRCM2., SRCR2
FQUE4 (DSTM3, SRCHM3
FQUEL (SRCR1, SRCR4
FINRED (IMRED

FCOP1 (RDATA

FMASK! (DMREL

FMASK2 (DMRE2

46: LINK DMRELl, DHRE2

(SHR8
S0: LINK GEl FTRNI (TRN1
S1: LINK WRT31. . DELI FGEL (GEl
2@ LINK WDAT1, WADRI FINUTL (WRTS!., WRTD!
S3: LINK FDUST 4 +DELL
S4: LINK GE2 FTRN2 (TRN2
SS: LINK WURTS2, 3RCR3 FGE (GE2

2
FIMUT2 (URTS2, URTD2
FONP (SRCR3, DSTR3

(DSTL@. LDA® ) H
FGEN4 (DSTX@, D3TMI ) ;

€6: LINK WDAT2, WADR2
S§7: LINK SRCR4, DSTR4

S9: LINK 0STHM1., DSTM2. D3TH3
60: LINK COPDT, D03TRL., DSTR2
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¢ FUNCTION FINWTI

: FUNCTION FQUE®
. FUNCTION FQUEL
¢ FUNCTION FQUE2
¢ FUNCTION FQUE3
¢ FUNCTION FQUE4

—
—
~—

e e = b b
N = = = — e —
SOO~NAOANSEWN

LINK DSTL®

LINK osTne
LINK GE3, GE4

FQUE2  (DSTN2. DSTR2

FQUE3 (DSTRl. DSTR4
FCOP2 (COPDT

nmuwwuene

(RS E A A 22

LINK WRTDL, DEL2 FGE3 (GE3

LINK WRTD2, DSTR3 FGE4 (GE4

LINK FDUST 4 .DEL2
¢ LINK PEND FOUTE (QUTE

SS888E0888880E80880088880888888888888880¢8

FUNCTION TABLE

o 90 @s es o0 @0 o

FUNCTION FIMRED OuT! (READ, @)
ouT2 (WRITE, 20@H, @),QUEUE (QUEWL., 2)
ouT2 (WRTIE, 20H, 0),QUEUE (QUEW2, 2)
OuT!L (HOST, @)

FUNCTION FINUT2
FUNCTION FOUTE

QUEUE (QUE®,
QUEUE (QUEL,
QUEUE (QUE2,
QUEUE (QUES3,
QUEUE (QUE4,
COUNT (@1

—— — -

¢ FUNCTION FGEN! = COPYBK (1. 1) CNTGE (H )
. FUNCTION FGEN2 = COPYBK (!, L) CNTGE (4] )
¢ FUNCTION FGEN3 = COPYBK (1., 2), CNTGE (H )
. FUNCTION FGEN4 = COPYBK (1. 2sL), CNTGE (4 )
FUNCTION FMASK! = AND X ) RDCYCS <(ANDB. 1)
¢ FUNCTION FMASK2 = AND (X ) RDCYCS (ANDD. 1)
FUNCTION FSHIFT = SHR X ) RDCYCS (DAT@8, 1)
: FUNCTION FTRNI = RDIDX (TRNDAT )
: FUNCTION FTRN2 = RDIDX (TRNDAT )
: FUNCTION FCOP1 = coPYN (2, a8
¢ FUNCTION FCOP2 = coPYH (2, 1)
¢ FUNCTION FGEL = COPYBK «(2, 9)
: FUNCTION FGE2 = COPYBK (2, 8)
¢ FUNCTION FGE3 = COPYBK (2., L
. FUNCTION FGE4 = COPYBK (2. L)
. FUNCTION FQNP = NOP (XX ) QUEUE (QUEN, 1)
= )
= )
= )
= )
= )
= )

¢ FUNCTION FDUST
;lt.ttttttt!t“lltttttt.tttttttiltttltttt
: DATA MEMORY

.
HE R e kL e R

MEMORY QUE®

= AREA (1 ) H

. MEMORY QUEI = AREA (1 ) 3
: MEMORY QUE2 = AREA 1l ) H
. MEMORY QUE3 = AREA (@ ) H
. MEMORY QUE4 = AREA 1 ) H
. MEMORY QUEN = AREA 1l ) 3
¢ MEMORY QUEWI = AREA 2 ) :
¢ MEMORY QUEW2 = AREA (2 ) H
MEMORY DATO8 = 8 H

¢ MEMORY ANDB = aFFQOH H
HEMORY ANDD = 000FFH H
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121:

160:
161:

163:
164:
16S:
166
167
168:
169:
170:
171
172:
173:
174:
17S:
176:
177
178:
179:
180:

MENQRY TRNDAT

62

000Q0H,.00003H.0QAACH, 0QQQFH.,
89030H.00033H,0003CH.0003FH.,»
900COH,000C3H,000CCH, 000CFH.,
0@QF0QH,.900F3H,800FCH,800FFH.,
8@300H,00303H,8030CH., 003QFH.,
90330H,80333H, 033CH,.8833FH,
803CAH,003C3H,883CCH, @@3CFH.,
@@3FOH.003F3H,803FCH, 003FFH,
90CQ0H,20C83H,89CACH,BACAFH,
80C30H, 80C33H,80C3CH,. 08C3FH,
80CCOH,80CC3H,0@CCCH,@8CCFH.
@QCFOH,00CF3H,80CFCH,88CFFH,
@QFQ@H,Q0FA3H,80FACH, 0OFAFH,
00F30H,08F33H,00F3CH, 80F3FH,
QQFCQAH,80FC3H,88FCCH,.80FCFH,
Q0FFOH,Q0FF3H.8QFFCH,@QFFFH.
830080H,03003H,8300CH,@300FH.,
838308H,083033H,8303CH,8303FH,
930CaH,030C3H, 830CCH,030CFH,
@30FOH.030F3H,838FCH,030FFH,
93300H,03303H,833QCH,033@FH,
83338H,083333H,8333CH, @333FH,
933CAH.,@33C3H,833CCH,@33CFH,
@33FQH.033F3H, 833FCH,@33FFH,
@3CQA0H, 83CA3H,83CACH, B3CAFH.,
83C308H,83C33H,83C3CH,B3C3FH,
93CCQAH,93CC3H,B83CCCH, @3CCFH,
93CF@H, 83CF3H,83CFCH, @3CFFH,
@83FQAH, @3FQ3H,83FACH, 03FAFH,
@3F30H,03F33H,83F3CH, 03F3FH,
@3FCQH,d3FC3H,83FCCH,@3FCFH,
@3FFQH,Q3FF3H,83FFCH,Q3FFFH,
@9C3QQH,dCQA03H,8CAACH, BCAOFH,
@C030@H,0CA33H,8CA3CH, @CO3FH,
@C@CaH, aCAC3H,8CACCH, dCACFH,
QCQOFQH,CAF3H,8CAFCH, 8COFFH,
9C300H,0C3083H,dC30CH ., @C30FH,
8C330H,0C333H,8C33CH, dC33FH,
8C3CaH,dC3C3H,8C3CCH, aC3CFH.,
@C3FQOH,@C3F3H,8C3FCH, 8C3FFH,
@8CCQ@H,0CCO3H,aCCACH, aCCOAFH,
9CC38H,0CC33H,dCC3CH, 0CC3FH,
ACCCOH,dCCC3H,CCCCH, aCCCFH,
QCCFQH,@CCF3H, 0CCFCH, dCCFFH,
OCFQ@H,dCFQ3H,CFACH,aCFOFH,
OCF30H,8CF33H,8CF3CH,8CF3FH.,
@CFCQAH,9CFC3H,8CFCCH,aCFCFH.
@CFFOH, @CFF3H,0CFFCH,@CFFFH,
@F@Q@H,QFQQ3H,8F@ACH, AFQQAFH,
@FQ30H,@F0@33H,AFA3CH, @FB3FH,
@FQCQOH,QFQC3H.QFACCH,QFQACFH,
QFQF@H.,OFOF3H,QFAFCH,dFQFFH,
QF300QH,0F383H,8F30CH, @F30FH.,
@F330H,0F333H,8F33CH, @F33FH.,
@F3CAH,F3C3H,@F3CCH,BF3CFH,
@F3FQH,@F3F3H.0F3FCH,OF3FFH,
@FCQQH,FCR3H,QFCACH,8FCOFH,
@FC3@H,8FC33H,dFC3CH, dFC3FH,
@FCCOH,8FCC3H.,FCCCH,QFCCFH.
@FCFOH.AFCF3H,8FCFCH,QFCFFH.,



181:
182:
183:
184:
185:
186:
187:
189:
189:
198:
191:
192:
193:
194:
195:
196:
197
198:

@FFQQH,FFA3H,QFFOCH,.QFF@FH,
@FF30H.8FF33H.8FF3CH,@FF3FH,
@FFCOH.dFFC3H,FFCCH.QFFCFH,
@FFFOH,@FFF3H.dFFFCH, 8FFFFH

i
1880838888888 883388388088880808888888880¢28¢

H START
START
DATA EXEC C(IPP, LSA®, . STARTS )

DATA EXEC CIPP, LDA@., STARTD )

END
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4.5

Simple Quadruple Enlargement

4.5.1 Processing Explained

The simple quadruple enlargement method, shown in Figure 4-
13, simply expands source image area (SRC) data fourfold
horizontally and vertically. Similar to the case of the
simple double enlargerent nrethod discussed in Section 4.3,
in this method four output bits are assigned to each input
bit, a fourfold enlargement is performed horizontally,
f:llowed by the writing of the data in four contiguous
lines.,

Ffigure 4-13
Simple Quadruple Enlargement

O T

HORIZONTAL ENLARGEMENT
l VERTICAL ENLARGEMENT

4.5.2 Algorithm

The algorithm employed in this method is similar to that
used in the simple double enlargement method, as shown in
Figure 4-14, It differs in the fact that, to achieve the
fourfold enlargement, each SRC word (16 bits) is segmented
into 4 bits, and a fourfold enlargement table is used for
each of these 4-bit segments to obtain 4 DST words. First,
for a given SRC data word four DST data words representing a
horizontal enlargement, are obtained. These four words are
then copied to four lines in the vertical direction. This
completes processing of an SRC data word.
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Figure 4-14
Algorithm for Simple Quadruple Enlargement

/1 WORD (16 a:rs\ SRC DATA

(e oo 4]

DIVIDED INTO 4-BIT SEGMENTS

- o 1 oo

FOURFOLD ENLARGEMENT TABLE TABLE LOOKUP
L 16 16 HORIZONTAL ENLARGEMEWT
16 16 1
@ WRITING TO 4 DST LINES

4.5.3 Parameters and Their Applicable Ranges

<Assembler-coded parameters>

L ... Number of image memory words in horizontal direction

H ... Number of source image area (SRC) words in horizontal
direction

V ... Number of source image area (SRC) lines in vertical
direction

<Start-up token-defined parameters>

STARTS ... Source image area (SRC) starting address
STARTD ... Destination image area (DST) starting address

The allowable values of these parameters are indicated in
the table below.
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I Parameter I Applicable range I (Value set in the ]
| ! ! example program) !
1 L i 0 - 65535 | (64) l
fl g T 1 - 256 7 ( 8) T
? v T 1 - 256 T (128) 1
| STARTS i 0 - 65535 T ( 0)* I
| STARTD | 0 - 65535 T (32) * T

Although STARTS and STARTD are variables (i.e.,
addresses), they are given default values since they
are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas are input as execution tokens.

Since no provision is made in this program for switching
banks, you should exercise care in setting the values of
parameters H and M.

4.5.4 Flow Graph Explained

Shown in Figure 4-15 is a flow graph for this program, This
flow graph is basically the same as that provided for the
double enlargement program, However, to the extent that the
division of words into 4-bit segments is required to produce
fourfold enlargement, this flow graph is more complicated.
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Figure 4.15
A Flow Graph of the Simple Quadruple Enlargement Method

SRC PROCESSING PART

FQUE3)

DST PROCESSING PART

(FWA1)

(FQUES)
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tPEND
|
(FIMRD) 557 i 1o
!_-
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|
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RDATA QUEUE
(st 0)
H PREPARATI!
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X13 ID+3 X186 DATA
L]
(kanD1
A M roeye RDCYCS RDCYCS
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4.5.5 Tips on Preparing Flow Graphs

This program uses an FQUEl node (in the center of Figure
4.15) to synchronize the generation of SRC addresses and DST
basic addresses (i.e., the addresses that form the basis of
creating 16 addresses in DST for each SRC address generated)
and to adjust the amount of uPD7281 internal data. If this
was not provided, SRC and DST address generation would be
uncoordinated, giving rise to a possible QUEUE overflow in
the write-out part. The input arc for FQUEl constitutes the
output from FCPY4 and FCPY8; this permits the next
processing to commence when a series of processing tasks
have been completed (or about to be completed). The timing
of such restarts has a significant impact on processing
speeds, as does the parallel execution of the job., Too fast
a restart could cause a QUEUE overflow or a GQ overflow on
the uPD7281, and too slow a restart degrades the processing
speed. Therefore, to improve performance, one should conduct
simulation runs to increase restart rates while making sure
that no overflows occur.

4.,5.6 Assembler Source Listing

L0 1685804088880 00888888880888808488880888880888
2:
3 ENLARGE X4
4:
5! jeeeeccccccscceccccccacceccccacccccceaaan
6: 3
7: MODULE IPP = 8
8: i
9:
19: EQUATE H = 8
L1: EQUATE V = 128
12: EQUATE L = 64 H
13: 3
14: 3
1S: EQUATE HOST = (] i
16: EQUATE READ = 4 H
17: EQUATE WRITE = S i
18:
19: EQUATE STARTS = ] i
= 20H {

20: EQUATE STARTD

22 (695803008000 EEEREITREISIEEEEIIESEISEOIRETLES

24: 3 INPUT-QUTPUT

28: INPUT  L3A0, LDA@., RDATA AT @ H
29: OUTPUT RDAT. WDAT, WADR, PEND i

30:

3‘: ISSSSETEISELISRSENELERAAEREEEISSNAITEENETSES

32:

33: 3 LINK TABLE

34:

35! feecceccccccccccccccaccccecccccmcacaeea-

36:

37: LINK X1, X2, X3 = FRAL (X2X68, LSA® ) i
38: LINK X4, XS X8 = FRA2 (XSX49, X1 ) B
39: LINK X2X6 = FQUE3 (X2, X8 ) H
4@: LINK PEND = FEND (X9, X3 )

41: LINK RDAT = FINRD (X4 )

42 l_.!NK XS5X49 = FQUE2 (XS, X49 )
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73: LINK

196:

tie:

¢ FUNCTION
: FUNCTION
¢ FUNCTION
: FUNCTION
: FUNCTION
: FUNCTION

¢ FUNCTION
: FUNCTION
¢ FUNCTION
¢ FUNCTION

FUNCTION
FUNCTION

: FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION

¢ FUNCTION
107: FUNCTION
188: FUNCTION
189: FUNCTION
FUNCTION

LINK  X13. Xi4, XIS, X18 = FCPRD
LINK  XIT = FANDL
LINK  XI8 = FAND2
LINK  X19 = FAND3
LINK X290 = FAND4
LINK  X21 2 FSHR1
LINK  X22 = FSHR2
LINK  X23 = FSHR3
LINK.  X24 = FRDX
LINK' X2 = FRDX
LINK X268 = FRDX
LINK  X27 = FROX
LINK  X28.  X29 = FCPY4
LINK  X38, X3l = FCPYL
LINK  X32, X33 = FCPY2
LINK  X34. X35 = FCPY3
LINK __ WDAT, _ WADR o= Filus
LINK  GDAT. WADR = FInwi
LINK  WDAT. UWADR = FINW2
LINK  WDAT. WADR 2 FINW3
LINK = FDUST
LINK = FDUST
LINK z FDUST
LINK  XT, X8, X9 = FuAL
D LINK X190, Xll,  XI2 3 FUA2
T LINK  X8x12 = FQUES
: LINK  X11X48 z FQUE4
: LINK  X36, X37. X38, X39 = FCPUA
X408, X4l = FCPYS
: LINK  X42,  X43 = FCPYS
: LINK  X44,  X45 = FCPYT
D LINK  X46,  X47 N FCPY8
D LINK  X48.,  X49 = FQUEL
: LINK = FDUST
: LINK z FDUST
LINK = FDUST
;"l.“"t.l..ll!“‘..lll‘.‘l"lll.l.....
FUNCTION TABLE

COPYBK (1, 1)
QUEUE (DQUE3. 1)
COPYBK (1., Ly

QUEUE (DQUE2, 1)
ouTl (READ, 9)
OuTI (HOST, @),

coPYN (4, 8)
AND.
AND.
AND,
AND.,
SHR.
SHR,
SHR,
RDIDX (TBLLG )
COPYBK (4. 8)
COPYBK (4, L}
COPYBK (4. e
COPYBK (4, [

0UT2 (WRITE, 20H., @),
QUT2 (WRITE, 20H., @).
QUT2 (WRITE. 20H, @),
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(RDATA

(X13

(X14

(X1S

(X16

[$.3%¢

(X18

(X19

(X290

(X21

(X22

(X23

(X24

(X25

(X26

(X27

(X28, X468
(X308, X480
(X32, X42
(X34, X4a

( »X31

( » X33

¢ +X3%
(X8X12, LDAQ
(X11X48, X7
(X8, X12
(X1L» X48
(X190

(X368

(X371

(X38

(X39

(X29 »X4T

¢ X441

( »X43

4 +X4S
CNTGE (H

CNTGE (V

QUEUE (ENDQUE,
RDCYCS (MASKL.,
RDCYCS (MASK2.,
RDCTC3 (MASK3.,
RDCYCS (MASK4.
RDCYCS (SHNUML.
ROCYCS (SHNUM2,
RDCYCS (SHNUN3.
QUEVUE (QUEURI.
QUEUE (QUEWR2,
QUEUE (QUEWR3.,

R S N N 2

R R



1117 FUNCTION FINW4 =  OUT2 (WRITE. 20H, 80,
1x§: FUNCTION  FDUST =  COUNT (1 )
1130 3

114: FUNCTION  FUAl = COPYBK (I, 4,
11S: FUNCTION  FUA2 =  COPYBK (1, 4sL),
116: FUNCTION  FQUES =  QUEUE (DQUES. 1)
117: FUNCTION  FQUE4 =  QUEUE ° (DQUE4. 1)
118: FUNCTION  FQUElI =  NOP XY )
119

120:_FUNCTION  FCPUA .= . COPYM (4,_ __1)
121t FUNCTION  FCPYS =  COPYBK (4, L)
122t FUNCTION  FCPYS =  COPYBK (4, L
123: FUNCTION  FCPY? =  COPYBK (4, L
nz;: FUNCTION FCPY8 =  COPYBK (4. L
125: 3

126 160008808088 588008080808¢8808888808880808080¢
1278 &

128: DATA MENORY

129: -

¢ MEMORY DQUE!L

: MEMORY TBLLG.

¢ MEMORY QUEWR4

= AREA 1 )
¢ MEMORY DQUE2 = AREA 1 )
¢ MEMORY DQUE3 = AREA 1 )
: MENORY DQUE4 = AREA 1 )
MEMORY DQUES = AREA 1 )
* MEMORY ENDQUE = AREA (9 )
MEMORY MASK! = QFQ00H
¢ MEMORY MASK2 = QFQaH
¢ MEMORY MASKI = 90F8H
© MEMORY MASK4 = @0QFH
MENORY SHNUNI = i2
HEMORY SHNUM2 = 8
+ MEMORY SHNUN3 = 4

"QUEUE

CNTGE
CNTGE

QUEUE

(QUEWR4.,

(H
w

(DQUEL,

4)

~~

n

00000H,0800FH,000FQH,00AFFH,00FQ0H, 8QFQFH,

@0FFQH,Q0FFFH,QF000H, FOFH, OFBFQH, OFOFFH,
@FFQ@H, @FFAFH, @FFF@H, aFFFFH

MEMORY QUEWRI = AREA (4 )
MEMORY QUEWR2 = AREA 4 )

¢ MEMORY QUEWR3 = AREA (4 )
= AREA 4 )

i
TEESSEANLENEEELINEENINERISILEIBAIBESEOSS

d START

: DATA EXEC C(IPP, LSAQ, STARTS )
. DATA EXEC = (IPP, LDA@. STARTD )
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Chapter 5
Affine Transformation

5.1 Processing Explained
The affine transformation provides a versatile means of
performing image transformations. It can be used for screen

enlargement, reduction, rotation, and displacement
simultaneously.

—_—
A rosa
TRANSFORMATION

SCREEN IMAGE BEFORE TRANSFORMATION

SCREEM IMAGE APTER TRANSFORMATION

However, this technique takes longer to execute than a program
utilizing double enlargement, quadruple enlargement, 90 degree
rotation, or some other specific algorithms. Therefore, the
affine transformation should be used only when required by the
application.

5.2 Algorithm
<Logical coordinates and physical addresses>

Figure 5-1
Logical Coordinates and Physical Addresses

H WORDS

(0,2 (0.0) 2
SER \WRBASE

\. ’ ’

'Y

y Y

V LINES

SOURCE IMAGE AREA (SRC) DESTINATION IMAGE AREA (DST)

IMAGE MEMORY
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An image memory may be thought of as being comprised of H words
horizontally and V lines vertically (i.e., 16 x H horizontal dots
and V vertical dots). In this image memory are two image areas
(source image area "SRC" and destination image area "DST). These
graphic image areas have logical coordinates (x,y) and (X,Y),
respectivelf, as shown in Figure 5-1, Further, the origin (0,0)
of the logical coordinates (x,y) corresponds with the MSB of
physical address RD BASE, and the origin (0,0) of the logical
coordinates (X,Y) corresponds with the MSB of physical address WR
BASE*. In this case the coordinates (x',y') of an arbitrary point
on SRC are physically:

Physical address RDBASE + y' « H+ [ x' / 16 ]
(1)
Bit position 15 - R( x' / 16 )

where [a/b] means the division of a by b, and
R(a/b) means the remainder of the division of a by b.

* : The MSB correspondence differs for the NEC graphic
display controllers uPD7220 and uPD7220A.

Similarly, the coordinates (X',Y') correspond with:

Physical address WRBASE + Y' « H+ [ X' / 16 }
(2)
Bit position 15 - R( X' / 16 )

In the affine transformation used in this program, the DST
logical coordinates (X',Y') and the SRC logical coordinates
(x',y') are related to each other by the following formulas:

x' = axX' + bY' + ¢
(3)
y' = dX' + eY' + £

where a, b, ¢, d, e, and £ are parameters that determine whether
a given transformation is an enlargement, reduction, rotation, or
displacement.

Note: The affine transformation formulas used in this program
specify the coordinates before transformation in terms of
coordinates after transformation.

In this program the logical coordinates (X',Y') are allowed to
vary from the point (0,0) to the point (max.(X),max.(¥Y)). The
logical coordinates (x',y') corresponding to each of the
coordinates are calculated, and the bits for these coordinates
are read from SRC and written to DST. Information is written to
DST in word units (16 bits).
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<Process Flow>

This program assumes that a DST is a 256 x 256 dots word boundary
area.

First, (X',¥') is set to (0,0). Then the coordinates (x',y")
corresponding to the variation of (X',¥') from the origin to
(256,0) are calculated. However, because all 256 values cannot
be calculated at once, 256 is divided into 16 segments and 16
dots are calculated at a time. Since Y does not vary during this
process, the amount of computation required is cut down by
calculating bY' + ¢ and eY' + £ in Equation (3) only once for
the processing of the first line and by adding these values to
ax' and d4x°'.

Actual physical addresses and bit positions are calculated for
each 16 sets of (x',y') values obtained by calculations on one
word (16 bits) of DST. SRC data are read using these physical
addresses, and the desired bits are extracted using the values
for bit positions.

16 Dpors
j— ]
/ L~
~—
SRC DST

The 16-bit data obtained in this manner are packed into a word
and written in DST. Since one DST line has 256 dots, writing 16
words completes the processing of one line. This process is
repeated line by line for as many lines as there are lines in DST
to complete the processing of one screen image.

<Precision of Computation>

In multiplying 16 bits by 16 bits in the uPD7281, it is possible
to select the high~order 16 bits and/or low-order 16 bits from
the results. This program selects the high-order 16 bits only.
For this reason the following scheme is employed in calculating
the values of parameters a, b, ¢, d, e, and £, and coordinates
(X',¥") and (x',y"):

(a) The parameters a, b, d, and e have a 16-bit precision (17

bits including the sign bit) with the decimal point occurring in
the 14th bit position.
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MSB LSB

==t e B i s G St Tt St T T SR U DY
4=t e S B s s s T S SR S S
Sign bit |

Position of decimal point

(b) Logically, the coordinates (X',Y') are allowed to increment
by one at a time over DST, but the placement of the decimal point
for X' and Y' at the sixth bit position from the LSB actually
makes them increment by 32 at a time.

MSB LSB
+-=4+ s s S s G T o U Ty
I N IR N N RN N AU N N ERN [N NN AR A N B
+-—+ s pa T B s S T Tt St JAT R

Sign bit |

Position of decimal point

(c) Since the products ax', bY', dX', and eY' represent the
high-order 16 bits of 32-bit multiplication products, the decimal
point in these products is at the third bit position from the
LSB.

MSB LSB
+-=+ L e e e A o e B At et bt e et
I [ T R R R I R T A T R A R B R IO |
+--+ L A s et e e i e e e e e e Mt At

Sign bit |

Position of decimal point

(d) Consequently, to be consistent with the precision of their
preceding terms, the parameters c and £ assume values with the
decimal point set at the third bit position from the LSB.

MSB LSB

+-=+ R e e e e s e B e s St 4

+==+ e e B Bt B e e s e B e Gt
Sign bit |

Position of decimal point

(e) As a result, the values of (x',y') have the decimal point
set at the third bit position from the LSB. Therefore, a given
valu% is reduced to an integer by performing a 2-bit right shift
(note).
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Note: (x',y') values have a precision of two bits below the
decimal point. Therefore, if a given value was 0.75 or 1.75,
retaining a value of 1 or 2 instead of rounding off the bits
below the decimal point through bit shifting would result in a
more accurate screen image. For this reason, 0.5 is added to the
values of x' and y' in this program, After this, a 2-bit right
shift is performed. The addition of 0.5 to these parameters
is done by adding 0.5 to parameters c and f£.

5.3 Parameteis and Their Applicable Ranges

<Assembler-coded parameters>

L ... Number of image memory words in horizontal direction

H ... Number of destination image area (DST) words in horizontal
direction

V ... Number of destination image area (DST) lines in vertical
direction

<Start-up token-defined parameters>

SETA ..... Affine transformation parameter
SETB ..... Affine transformation parameter
SETC ..... Affine transformation parameter
SETD ..... Affine transformation parameter
SETE ..... Affine transformation parameter
SETF ..... Affine transformation parameter
RDBASE ... Source image area (SRC) starting address

WRBASE ... Destination image area (DST) starting address

mRoQAQUO

The allowable values of these parameters are indicated in the
table below.
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? Parameter TI Applicable range T (Value set in the TI
! ! J example program) |
| L | 0 - 65535 | (64) 1
j H E 1 - 256 T (16) j
j v | 1 - 256 ? (256) E
| sETA 1 -7.999 - +7.999 E (0)* I
E SETB ] -7.999 - +7.999 I (0)* I
1 SETC  |-2047.9 - +2047.9 i ( 0)* I
| SETD ] -7.999 - +7.999 I ( 0)* 1
- I -7.999 - +7.999 | ( 0)* ?
j SETF F-zo47.9 - +2047.9 ? (0)* E
| RDBASE E 0 - 65535 | ( 0)* I
| WRBASE I 0 - 65535 | (32) * |

Although STARTS and STARTD are variables (i.e.,
addresses), they are given default values since they
are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas are input as execution tokens.

o

Since no provision is made in this program for switching banks,
you should exercise care in setting the values for parameters H
and V.

<Input Tokens>

This program provides ten input tokens. The first and last of
these tokens require special explanations.

The first token is a command reset. It clears the ACC register of
the PU in the uPD7281 to 0. Bear in mind that, when this token is
input into the uPD7281, all programs in execution at the time are
erased. Make sure, when inputting this token, that no program is
running within the uPD7281.

The last token is a program start-up token. When this token is
input, the uPD7281 starts operation. Since the data value for
this token is also used as the line counter for the number of DST
lines it should always be input as 0.
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5.4 Flow Graph Explained

<Explanation of Main Nodes>

FGENE

FBR, FCR, FWl

FBRD, FCRD, FW2
FGEN2

FTT, PNYD, PSH

FTTD, PNY, PSHD

PIMX, FSA, FADDX, FADDZ

FREAD
PMY, FSUB
PBGl, PSHL3, PACC

PAR1

FWRITE
PGEN7

PGENS

.
.

o

e oo

Controls the counting of the number of DST
lines. If the CNTGE instruction parameter
is set to 256, 256 lines of images are
processed.

Calculates bY' + ¢ and writes the results
to W1BUF. This value needs to be calculated
only once for each value of Y', and it can
be read from W1BUF at any time when an
addition to aX' is performed.

Calculates eY' + £ and writes the results
to W2BUF.

Increments X' from 0 to max.(X) and outputs
the results as a token., Since not all
values for 0 through max.(X) can be output
at once, 16 values are output at a time.
Calculates dX' + eY¥' + £ and performs a
right shift to round off values below the
decimal point.

Calculates aXx' + by' + ¢ and performs a
right shift to round off values below the
decimal point.

From a computed value (x',y'), calculates
the physical address of the given
coordinates.

Reads SRC data.

Calculates bit positions from x' values.
Extracts bits from the bit positions
calculated by PMY and FSUB from data that
were read, and sets these bits in their
proper positions in a word of DST data.
Detects completion of the setting of one
word of DST data (the arrival of 16 tokens)
and starts the processing of the next word.
Writes DST data to the DST address.

Creates starting addresses for DST lines,
starting from the DST starting address WR
BASE.

Creates addresses for one line among the
DST addresses.
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Figure 5.2

An Affine Transformation Flow Graph
STATTK
trmn
X486
QUT!t '
(ENDN l_ UEUE LUEU! (PQ7)
- X2
X1
x 3
(FCOPY3)[T53YM 7] 4w
b [D+2 ]
GFREast)
Xs X4
LDAO =
Xe2 RDCYCS RDCYCS
(CNTE) |(FBRD) | (CNTB) |(FBR)
x38 MUL MUL
Ixc X7
(PQ1) RDCYCS RDCYCS
T (onTF) |CFCBD) | (cnte) ((FeR)
ADD ADD
10
. X X8
WRCYCS WRCYCS
CNTGE_H]( PGENS) I(wuur) I(M) l(w'w”\|(nv”
1] det
(FTTD)[ RDCYCS RDCYCS
X39 (CNTA) (CNTD) ((FTT)
MUL MUL
X20 lxn
WADR  pny) | RDCYCS RDCYCS | pnyD)
§ (W1BUF) (W2BUF)
g N ADD ADD
3/ WOAT X21 x18
(FWRITE)
RDCYCS RDCYCS
<36 (PSHD)| (sp) (SF) [(psH)
X37 SHR SHR
x"i ixu '
(FCOPY2) [CoPYY (FCOPY2) [Copym 2 RDCYCS
dmo d=y T (ormx) [(PIMX)
ROCYCS
PACKD
(C000F) | ey
AND
(pace)[COSNT 18
L_acc_j (FSUB) :QU U:’E ( FADDX)
ADD
ROATA(at 0) x24
. | ROCYCS
s [ (BASE 1) |( FADDZ)
| ADD
X34 (eoata) x2s
1) RDCYCS ;
CPARL)[CUDNT 1% (CSH) |(PSHL3) OUT_1_J( FREAD)
STL } READ
X3z | RDAT
] L]
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5.5 Tips on Writing Flow Graphs

This program assumes that a DST is 256 dots by 256 dots. If a
512-dot by 512-dot DST is desired, you must use loop-forming
nodes (as shown in Figure 5-3) in addition to the nodes FGENE
and PGEN7 and change the GNTGE instruction parameter in PGEN5 to
512/16=32.

Figure 5-2
A Method for Enlarging a Processing Area

CNTGE QUEUE CNTGE 2
COPYBK — Ll COPYBK 1
— |

_1
CNTGE 256

w COPYBK 1

The CNTGE instruction parameter can not be allowed to exceed 256.
To accommodate more than 256 values the node addition described
above is required.

5.6 Assembler Source Listing

1: IESS0S S0 SES0SSEEENININOSERIEEEREEBEENST
2i i
T AFFINE TRANSFORMATION
4:
5! feeecememceccceccccccccecccacmacmmeesm—an
6:
T HODULE 1P = 8 3
9 EQUATE H = 16 ;
10: EQUATE L = 64 ;
11: EQUATE = 258 ;
128 3 .
13! EQUATE HOST = [}
14t EQUATE READ = 4 :
IS: EQUATE GRITE = s
18: &
17: EQUATE RDBASE = ]

= 32 ;

18: EQUATE WRBASE
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GELRNIBRNARNENNY
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INPUT-OUTPUT

INPUT  LSae. LDA®.

RDATA AT @

1808806800008 00008008080488¢88008000800808000000

H
H
H
:

INPUT  SETA. SETB. SETC. SETD. SETE.

OUTPUT RDAT. WDAT,

{ LINK TABLE

WADR.

PEND

568008880088 088888000888880800888800880s

X3
X6

X184

X4l
X4s

DLINK X1, X2,
¢ LINK X4, XS,

LINK X7

LINK X8

LINK

LINK X9

LINK X109

LINK

LINK X1l

LINK  X12,  X13,

LINK X153, X8

LINK  Xi7

LINK X8

LINK X192

LINK X209

LINK X211

LINK  X22

LINK 23

LINK X34

LINK X35

LINK  RCAT

LINK %25,  X27

LINK  X28

LNk X29

LINK X320

LINK  X31

Lidk  x32

LINK X33, X34

LINK X35

LINK  PACXD

LINK X386,  X37

LINK  GDAT., WGADR

LINK %38

LINK X329,  xs@.

LINK  X22 .

LINK  X43,  Xsa.

LINK  PSHD -
:LINK X486

; FUNCTION TABLE

i
|

LU O T T O O L T T T T T L LR T U TR LA L U TR [

8]0

FSETA
F3ETB
FSETC
F3ETD

FSETRB

FGENE
FCOPY3
FBR
FCR
FUl

SES8828EESESEETEEIIELTEELEESTEEESREREETS

SETF,

AZERO

+AZERO

»X11

» %28

[ RN

[PROSRSRCRURORURRUR GRSV RURURCRUR VRO R RGN UR ORGSO USROS RO



91: FUNCTION FGENE
92: FUNCTION FCOPY3
23: FUNCTIOHN F3R
94: FUNCTION FCR
2%: FUNCTION Fu2
96: FUNCTION FBRD
97: FUNCTION FRD2
98: FUNCTION FCRD
99: FUNCTION FUL
1@@: FUNCTION FCOPY2
181: FUNCTION FGEN2

CQPYBK (1. 3. CNTGE (v )
copyn (3. [ M

MUL. RDCYCS (CNTS. 1
ADD. ROCYC3 (CNTC, I
WRCYC3 (WIBUF, 1)

HUL. ROCYC3 (CNTE, 1)
RDOCYC3 <(CHT® ., 1)

ADD. ROCYC3 (CMTF. 1)
WRCYC3 (Y13UF, 1) .

coPYM 2. [ &

COPYBK (i8. 32>, CNTGE (H

)
192 FUNCTION FTT HUL. ROCYC3 (CNTD. 1)
192: FUNCTIONM PNY ADD. ROCYCS (UWLIBUF. 1)
194: FUNCTION PSH SHR. ROCYC3 (3F. L
18S: FUNCTION FTTD NUL., ROCYC: (CHTA. D)
136: FUNCTION PNYD ADD. RDCYC3 (WZBUF. 1)
107: FUNCTION PEHD SHR. ROCYCS (SF. |9
188: FUNCTION PIHX MUk Y 3. RDCYC3 «(CIAX, 1)
1939: FUNCTION FADDX ADD. QUEUE (QUEL. 16)
119: FUNCTION FADDZ AQ0. ROCYC3 (3ASEl, 1)
111t FUNCTION FREAD (READ. @)
112t FUNCTION F3A SHR, RDOCYC3 (ZCNT. 1)
113t FUNCTION PHY AND. RDCYC3 (C3J0F. 1)
114 FUNCTION F3UB 3UB (XCH ). RDCYC3 (ClLS. 1)
11S: FUNCTION P3G1 GETI. QUEUE (BSF., 18)
116: FUNCTION PSHL3 SHL,» ROCYCS (C3H. - 16)
117t FUNCTION PARI COUNT (16 )
118: FUNCTION Pal QUEUVE (QUE3. D
113t FUNCTION PACC ACC. counT 16 )
120 _FUNCTION.. FWRITE - QUTZ _ (WRITZ,_20H. 08). QUEYE (QUE4L. 1/)
121: FUNCTION PQ2 QUEUE (QUES, 1)
122: FUNCTION PGENS COPYBK (1. , CNTGE (H )
123: FUNCTION PQ6 QUEUVE (QUES.,

124: FUNCTION PGENT
125: FUNCTION ENDN
126: FUNCTION PQ7
127: FUNCTION FSETA
128: FUNCTION FSETB
129: FUNCTION FSETC
130: FUNCTION F3ETD
131: FUNCTION FSETE .
132: FUNCTION FSETF

. CNTGE (V )
, QUEUE  (QUES., 1)

=}
<
m

=1
m
~
(=]
<
m
—

-

LI L L L T L L L L T O T T T O T R T T T R T T R TR T NN NN R RN R
o
(=1
3

9]
| 9
L
9)
|9
WRCYCS (CNTA, 1)
19
1)
1)
]
19
i)

133: FUNCTION FSETRB WRCYCS <(BASEi.,
134:

135! (#8850 088088 C3008EREEREEEEREEISIEEIERIOT
136:

137¢ ¢ DATA MENORY

138 ¢

123! i-e=ccecccaccaccaa ceccmea mecemcececaccas .-
140:

142: MEMORY CNTB = 2000H ;
1431 MEMORY CNTC = ;
144: MEMORY CNTD = 20080H :
145: MEMORY CHTE = ? i
146: MEMORY CNTF = Q :
147: MEMORY UWIBUF = AREA 1 ) i
148: MEMORY W2BUF = AREA 1 ) i
149: MEMORY CNT® = [} :
15@: MEMORY SF = 2 i
1S1: MENORY CINX = 1 {
1S2: MEMORY BASEl = 0 i
153: MEMORY SCNT = H
154 MEMORY COQOF = BBGFH i
1S5: NMENORY CIS H H
1S6: MEMORY BSF = AREA (¢} H .
157: MEMORY CSH = 9,1,2,3.4, 5 6.7, 8 9,18, ll.lZ.lelMlS d
1S8: MEMORY QUE! = AREA (91 H
159: MEMORY QUE3 = 1 H
16@: MEMORY QUE4 = AREA (18 ) H
161: MEMORY QUES = 1 i
162: MEMORY QUE3 = AREA (§} ) {
163: NEMORY  QUE9 = AREA 1 ) {
164: MEMORY QUELL = AREA (g} ) d

165: ¢
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166:
167:
168:
169:
170:
1712
1722
173:
174:
17S:
176:
177
178:
179:
189:
181:
182:
183:
184:
18S8:

START
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

END

START

CRESET
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC

CIPP, SETD.
C(IPP. 3ETE,
(IPB.__SETF.

CIPP, LSA@.,
(IPP, LDA®,
(IPP. AZERO.
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Chapter 6

Profiling

Profiling is the process of projecting a binary image in a
certain direction, counting the number of pixel having the value
of "1", and forming a histogram of the results. Profiling is
illustrated in Figure 6-1.

Figure 6-1
Profiling

PROFILE

6.1 Horizontal Profiling
6.1.1 Processing Explained
A horizontal profile is a histogram that is obtained by

projecting a binary image in the horizontal direction, as
shown in Figure 6-2.

Figure 6-2 )
Horizontal Profiling

6.1.2 Algorithm

Suppose that an image memory is comprised of L words
horizontally and M lines vertically, as shown in Figure 6-3.
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Figure 6-3
Definition of a Source Image Area

RDBASE
L WORDS
H WORDS
g 1 2 eeeee H
g 1 LINE
M LINES > 16 BITS
IMAGE MEMORY

The following explains the method of creating a horizontal
profile for a source image area of H words horizontally and
V lines vertically, with the origin at the physical address
RD BASE.

Consider the horizontal profile for one line. Since the
line consists of H words, the program reads these H words
one by one from the source image area and counts the number
of "1" bits existing in each word. The counts are added for
all H words. Let the resulting value be the histogram value
(the horizontal profile) of the line.

The "1" bits in each word are counted by means of a table
lookup within the DM of the uPD7281., The uPD7281 RDIDX
instruction in the AG&FC is a table lookup instruction.
This instruction is capable of specifying an index address
in eight bits. Consequently, the word (16 bits) read from
the image memory is divided into 2 parts of 8 bits each, and
each of these values is used as an index to the lookup
table. If the numbers of "1" bits in the corresponding
addresses are stored in the table beforehand, the number of
"l" bits in a ward can be counted in an efficient manner by
cumulative addition of the values obtained from the table
lookup process. ’
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LOOKUP ADDRESS LOOKUP ADDRESS
5 4
TABLE VALUE

To accumulate the looked-up values, the ACC instruction in
the PU of the uPD7281 is used. This requires that the ACC
register be set to 0 by the reset command before start of
the program. Also, because each word is divided into two
segments, the number of additions performed for n words will
be 2n.

Since reading information from the image memory one word at
a time would be an inefficient use of the uPD728l's internal
pipelined ring, the program reads Q words of data
continuously. Therefore, "H words" used in this program must
a multiple of Q. Further, the cumulative values obtained
through the addition operations are written in the image
memory contiguously from a specified address.

6.1.3 Parameters and Their Applicable Ranges
<Assembler-coded parameters>

L ... Number of image memory words in horizontal direction

H ... Number of source image area (SRC) words in horizontal
direction

V ... Number of source image area (SRC) lines in vertical
direction

Q ... Number of continuous reads from the image memory
(horizontal direction)

R ... Number of segments read from the image memory
(vertical direction)

<Start-up token-defined parameters>

STARTS ... Source image area (SRC) starting address
STARTD ... Starting address of a profile storage

The allowable values of these parameters are indicated in
the table below.
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i Parameter i Applicable range I (Value set in the I
1 ! ! example program) 1
:| L | 0 - 65535/R 1 (64) |
I g I Q - 256 x Q Tl (32) T
] v R - 256 x R T (256) 1
a1 1-16 1 (16) i
E R 1 - 256 1 (32) I
j STARTS T 0 - 65535 i ( 0)* I
i STARTD T 0- - 65535 T (1FFH) * T

*»
o

Although STARTS and STARTD are variables (i.e.,

addresses), they are given default values since they
are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas.-are input as execution tokens.

Since no provision is made in this program for switching

banks, you should
parameters H and V.

exercise care in setting values of

6.1.4 Flow Graph Explained

<Explanation of main

FGEN1, FGEN2 :

FGENS

FOUTR :
FCOPl, FAND1l, FSHR1:

FTABl1 :

nodes>

Generates the starting addresses of
lines on which profiling computations
are performed based on the SRC starting
address STARTS. Since only up to 256
can be counted by one CNTGE
instruction, CNTGE instruction are used
in a double 1loop in this program to
permit a count exceeding 256.
Generates data read addresses for a
line in the horizontal direction. For
improved internal processing of the
uPD7281, this node generates addresses
for Q contiguous words.

Reads SRC data.

Makes two copies of the SRC data read
and extracts the high-order (FSHR1) and
low-order (FAND1l) eight bits.

Reads the uPD7281's DM by using the 8-
bit data extracted in FAND1l and FSHR1
as index addresses. In other words,
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FCONT1

FACCl
FOUTW

FGEN3, FGEN4

o

this node obtains the number of "1"s
in the 8-bit data by using a table
lookup.

Detects completion of the operation of
counting Q words and starts up FGENS.
When 2 x Q tokens arrive in this node,
FCONT1 creates one token for starting
the next processing step.

Cumulatively adds count values.

Matches the cumulative count value for
a line and the storage address of a
horizontal profile and writes the
cumulative count value in the image
memory.

Creates storage addresses based on the
profile storage starting address
STARTD.
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Pigure 6.4
A Flow Graph of a Horizontal Profile
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6.1.5 Assembler Source Listing

$888088988880080008000800000000RERRRR0TSTY

1 3

" :

3t HORIZONTAL PROFILE

4:

§: jemeceescecccssesmeaeccceas tnbeme PRI
6:

7 roouLe 1pP z 8 ;
9! EQUATE L = 64 :
13: EQUATE H = 32 :
11: EQUATE Q = 16 ;
12: EQUATE R = 32 :
13: EQUATE V = 256 ;
140 %

1S: EQUATE HOST = ) ;
16: EQUATE READ H 4 H
17¢ EQUATE WRITE = s :
18: ¢

19: EQUATE STARTS = ) ;
20° EQUATE 3TARTD = LFFY ;
21 %

: M ;"..'..!'.."..'."'l'..l'.."l.'l..l“
23: 3

24: 3 INPUT-OUTPUT

2S:

26; ieesccmcmceccesscccccececaceccamccccos .-
ari Ineut LSAQ. LDA@. RDATA AT @ ;

29: OUTPUT PEND, WDAT. WADR, RDAT i

4
$EESEESAEESEEIAIRIESENEASASBIEOOINTRISILS

H LINK TABLE
t LINK SRD20. SRD21., SRD22 = FGENL
: LINK SRD3@. SRD31. SRD32 = FGEN2
: LINK SRD4@. SRD4l1., SRD42 = FGENS
LIRK SRD1L1 = FQUEL
LINK SRD33 = FQUE2
LIN SkD43 = FQUES
¢ LINK PEND = FOUT
¢ LINK RDAT = FOUTR
45: LINK uRQL., 1RQ2 = FCOP
47! LINK SWR28. SWR21., SWR22 = FGEN3
48: LINK SWR3@. SWR3l, SWR32 = FGEN4
49: LINK SWR11 = FQUE3
€2: LINK SWR33 = FQUE4
S1: LINK = FDUST
€21 3
€3: LINK IMOR, KDL = FCOP1
S4: LINK TABLR = FANDI
S8: LINK TABLR = FSHRL
S6: LINK PROS = FTABL
S7: LINK PROL. PRO2 = FCONTI
S8: LINK TPROF = FACC!
SQ: LIRK WDAT, WADR = FOUTY

6a: ¢

89

(SRDI1,
(SR023.,
(SRD43.
(SRD21.,
(SRD3L .
(30041 .
(SR022
(SRD4Q
(52D42

(SWRIL.
(SWR33.
(SWR2L.,
(SWR3L.
(

(RDATA
C(IMOR
CInMdL
(TABLR
(PROS
(PROL
(TPROF.

LSAQ
SRDZ0
SRD30
SRD32
MRCL
PRO2

LDAR
SWR20
SWR32
MRQ2
+SWR22

SUR32

[P RV
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8088098000008 00000080808000s88¢8s8088088008)

62: i

63: i FUNCTION TABLE

64: ¢

g:: feececcccccccanccccccccacoccccoccccnccann

67: FUNCTION FGEN! COPYBK (1. LeR), CNTGE  (U/R )
68: FUNCTION FGEN2 COPYSK (1., L), CNTGE (R )
69: FUNCTION FGENS COPYBK (Q. 1. CNTGE  (H/Q )

QUEUE (CSASE!. 1)
QUEUE (QB8ASE2. 1)
QUEUE (QBASES. 1)
ouTl (HOST. @
QuT! (READ., @)

7@: FUNCTION FQUEL
T1: FUNCTION FQUE2

2t FUNCTION FQUES
73: FUNCTION FOUT®
74: FUNCTION FOUTR

75: FUNCTION FCOPQ copyn 2, )
76: FUNCTION FGEN3 COPYBK (1, R)» CNTGE (V/R )
T7: FUNCTION FGEN4 Ly 9N CNTGE (R )

QUEUE (QBASE3, 1)

73: FUNCTION  FQUE3
QUEUE  (QBASE4.1)

T9: FUNCTION FQUE4

80@: FUNCTION FDUST COUNT L )
81: FUNCTION FCOPI copyYn (2, 9)
2t FUNCTION FAND! AND X ) RDCYC3 (DFF. 9]
83: FUNCTION FSHRI SHR X s RDCYCS (EIGHT., 1)
84: FUNCTION FTAB! RDIDX (RBASEL )
3S: FUNCTION FCONT!L COUNT (2:Q )

ACC X . COUNT (2¢Q )

86: FUHCTION FACC! )
ouT2 (WRITE, 2QH, @).QUEUE (QBASES. 1)

87: FUNCTION FOUTW

L T L T T T T T T T R T TR TR TR TR IR R R ]
a
o
o
—<
o
=

88:
3O 8883800080800 LEETIRIEENELIERIEBERIIELIES
Qe:
91 3 DATA MEMORY
92:
33! jeececcceccccccccccconanan B LT T T T
94:
95: MEMORY QBASEl = AREA 1 ) {
96: MENORY QBASE2 = AREA 1 ) H
97: MEMORY QBASE3 = AREA 1 ) H
98: MENORY QBASE4 = AREA 1 ) i
99: MENORY QBASES = AREA o ) |
10@: MEMORY (QBASES = AREA 1l ) B
181: MEMORY OFF = Q0FFH i
102: MEMORY EIGHT = 8 H
1293: MEXORY RBASE! = 2.1,1.2,142,2.3.1,2,2.3.2.3.3.4,
124: 1,2.2,3,2.3:3/4.2.3.3.4.3.4.4.5.
10S: 1,2.2,3,2.3.3.4.2.3.3.4.3.4.4.5.
106: 2,3.3.4.3.4.4.5.3,4.4.5,4,5.5.6.
187: 1,2,2,3,2.3.3.4.2,3.3.4.3.4.4.5.
128: 2.3.3,4.3,4.4.5,3,4.4.5.4,5.5.6,
189: 2,3.3,4.3.4.4.5,3+4.4,5.4.5.5,6.
110: 3.4,4.5.4.5.5.6,4,5.5.,6.5.6.6.7.
e 102.2,3,2.3.3.4.2,3.3,4.3.4.4.5,
112 2.3.3,4,3.4.4.5,3.4.4,5.4,5.5.8.,
113: 2:3,3.4,3.4.4.5.3.4.4,5.4.5,5,6,
114: 3:4,4.5.4.5.5.6.4.5.5,6.5,6.6.7.
119 2,3.3.4.3,4.4.5.3.4.4,5,4.5.3.6,
1186: 3,4,4.5,4.5.5.6.4.5.5.6.5.6,5.7.
117 3/4.4,5,4.5.5.6,4,5.5.6.5.6.6.7.
113: 4,5,5,6.5,6.6.7.5.6.6.7.6,7.7.8
1190 3
128: fevesvccvesvesvranscagpongonsonagry g .

i START -
125:
126: START H
1278
128: DATA CRESET (IPP ) i
129: DATA EXEC C(IPP,  LSA@. TARTS ) :
{gff DATA EXEC C(IPP,  LDA®. STARTD ) :
132: END H
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6.2 Vertical Profiling

6.2.1 Processing Explained

A vertical profile is a histogram obtained by projecting a

binary image in the vertical direction, as shown in Figure
6-5.

Figure 6-5
A Vertical Profile

6.2.2 Algorithm

An object screen is comprised of H words horizontally and V
lines vertically.

Figure 6-6
Definition of the Source Image Area
H WORDS
/
V LINES
1| 2| =--=--- H

N
16 BITS

i ng, the screen is divided uGi‘lZui‘lt'ally
into H blocks of one word each. In this program a vertical
block is sought for each block. Since there are 16 bits in

a word, processing a single block produces 16 cumulative
values.

The processing of a block starts with one word which
comprises the block copying it to 16 parts. The PU
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instruction GET1 is used to shift all bits of the data to
the LSBs of its 16 copies. This processing can be carried
on efficiently by the folowing procedure: have the data 0-15
stored in the DM, and execute the GET1l instruction while
reading this data cyclically by the use of the AG & FC
instructsion RDCYCS.

[cooo0000000000001]

0000000000001
0110001 1111011]

0000000000000000]

l[0000000000000001]

Sixteen contiguous areas are allocated in the DM, and the
corresponding cumulative values are stored in these areas
(Figure 6-7). The cyclic address generation function of the
RDCYCS instruction in the AG&FC is used in reading from and
writing to these 16 DM areas. These 16 DM areas are cleared
to 0 before the processing of a block begins. In this
program these processing steps and the clearing operation
are performed in parallel in order to minimize the loss of
efficiency through the generation of read addresses and
access to external memories. (Although the clearing
operation can be performed much more quickly in this program
than the writing of cumulative values, the sequence of
execution of PU and GE instructions cannot be predicted in
general. You should investigate such a sequence using the
uPD7281 simulator).

Upon completion of the processing of a block, these areas
hold the cumulative values of the corresponding bits. These
values are read and written in specified image memory
addresses.

As in the case of horizontal profiling, control of the H
blocks is with the CNTGE instruction. Be aware that the
order in which data are read from the image memory is
different with horizontal profiling.
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Figure 6-7
Updating the DM

LS8 5 LsSB 5
8 9
7 7
TT 12
5 5
3 ONE READOUT WORD ry
10
+ [1011001001101010] < L
MsB8 LSB
13 I'J
2
1
8
T
MSB 3 MsB

DM CUMULA' VALUES
DM CUMULATIVE VALUES BEFORE READING 0::":0!0 ArreR

READING ONE WORD

6.2.3 Parameters and Their Applicable Ranges
<Assembler-coded parameters>

L ... Number of image memory words in horizontal direction

H ... Number of source image area (SRC) words in horizontal
direction (number of blocks)

V ... Number of source image area (SRC) lines in vertical
direction

R ... Number of segments read from the image memory
(vertical direction)

<Start-up token-defined parameters>

STARTS ... Source image area (SRC) starting address
STARTD ... Starting address of a profile storage

The allowable values of these parameters are indicated in
the table below.
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T Parameter T Applicable range T (Value set in the i
| ! ! example program) !
| Lo 0 - 65535/R | (64) i
i g 1 1 - 256 Tl (16) E
? v ] R - 256 x R T (512) T|
1 R ! 1 - 256 I (16) I
Tl STARTS | 0 - 65535 | ( 0)* I
1 STARTD 1 0 - 65535 | (1FFH) * 1

*
.

: Although STARTS and STARTD are variables (i.e.,
addresses), they are given default values since they
are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas are input as execution tokens.

Since no provision is made in this program for switching
banks, you should exercise care in setting values of
parameters H and V. It is assumed that source areas are
given in word boundaries.

6.2.4 Flow Graph Explained
<Explanation of main nodes>

FBLOK : Creates the starting addresses of
blocks based on the SRC starting
address STARTS.

FRDZ, FGEZ, FWRZ : Clears the save area (BASEl) to 0 for
16 count values.

FRDAD1, FRDAD2 : Creates the read addresses within a
block using the GNTGE instruction in
double loops.

FOUTR : Reads SRC data.

FGEDA : Makes 16 copies of one-word SRC data
that was read.

FGET : Outputs the value of a given bit
position in the read data in the LSB
bit. Information specifying the bit
positions is contained in the DM,
written contiguously. FGET reads this
information and passes it as a GET1
instruction token.

DM data
15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
For example, the first token arriving



FADD, FWRP

FGEAD

FRDDA

FOUT2

FOUTE

o

in this node reads 15 from the DM and
executes the GET1 instruction.
Therefore, the fifteenth bit of the
arriving data is shifted to the LSB.
The next token arriving in the node
reads 14 from the DM, causing the
fourteenth bit to be shifted to the
LSB. By using the DM's cyclic read
function and the GET1l instruction of
the PU in this manner it is possible to
output any desired bit with one node.
Reads the contents of the DM count
value save area (BASEl) successively,
adds to them the bits that were output
at node FGET, and writes the results
back to the same area. The cyclic read
and cyclic write are also used in this
case,

Creates 16 storage addresses
continuously based on the profile
storage starting address STARTD.

Reads the 16 data values from the DM
continuously upon completion of
cumulative addition for one block.
Writes 16 values of data obtained in
FRDDA to their corresponding storage
addresses.

Notifies the host computer of the
completion of processing.
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Figure 6.8

A Flow Graph of Vertical Profiling
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6.2.5 Assembler Source Listing

. MODULE

EQUATE
EQUATE
EQUATE
EQUATE

: EQUATE
¢ EQUATE
¢ EQUATE

: EQUATE
: EQUATE

—— .
~ROR®NOUNL WN~

——— - —
[LXUR AN YN

N =
SOWm-~

NN
N -

N
& W

INPUT

WRNNNN D
SWV®~NOU

VERTICAL PROFILE

PP

STARTS
STARTD

wuue "

nwnu

INPUT-QUTPUT

LSA®.,

LDA®,

18
Si2
16
64

4
S

[}
LFFH

RDATA AT @

6UTPUT PEND, RDAT, WDAT, WADR

190000000000 30500003838088REIPBRTNEBETISS

(TS IEEESUIESLLUIEETELSESEIEIIELLOIIEOSS

jeccsccccacecacacns emccscecccacccccccann

3l (sssssssssssrssasnsesssenssatesRsesetenes

SRD30.,
SRD33
ROAT

RDGET.
DADD

WBUF
NXTRQ

LINK TABLE

SBL1t1L,

STZ0
SUR14
STZ3

SRD21!,
SRD31,

RDOUST

SWRLL,

SRD22
SRD32

SWR12

ccop
WADR

WAL en
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FBLOK
FQUEL
FCOP1
FQUTE
FCOP2
FRDZ
FGEZ
FURZ
FDUST2

FRDADI
FQUE2
FRDAD2
FQUE3
FOUTR

FGEDA
FOUST4
FGET
FADD
FURP

FGEAD
FQUE4
FDUST3
FCBK

FRODA
FOUT2

(SBLL3,
(SBL11,
(SBL1®
(3BL12
(CCoP
(3728
(5TZ1
(3722

4

(SRD23
(3RD21
(SRD33
(SRD31L
(SRD3@

(RDATA
«

(RDGET
(DADD
(

(SWR13
(SuR!L
<

(SRD22

(CRDD
(DAQUT

LsSae
SBLi4

»STZ3
+SRD1@
»3RD32

»SRD29
+NXTRQ

»RDDOUST

+WBUF
+LDAD
+SUR14

»SWR12

»SWR10Q

oo oo
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: FUNCTION FGEZ
: FUNCTION FURZ
¢ FUNCTION FDUST2

¢ FUNCTION FRDAD!
: FUNCTION FQUE2
: FUNCTION FRDAD2
: FUNCTION FQUE3
: FUNCTION FOUR

: FUNCTION FGEDA

: FUNCTION FCBK
¢ FUNCTION FRDDA
¢ FUNCTION FOUT2

: MEMORY QBASE!

¢ MEMORY BASE!

= AREA 1 )

MEMORY QBASE2 = AREA 1 )

¢ MEMORY QBA3E3 = AREA 1 )

MEMORY QBASE4 = AREA (16 )

MEMORY QBASES = AREA (16 )
MEMORY RBASEL = L]

T 1088088088080 888883080880088088883808088008¢

FUNCTION TABLE

FUNCTION FBLOK COPYBK (1. 1
FUNCTION FQUE!L QUEUE (QBASEL. 1)
FUNCTION FCoP1 CoPYN (2, L}
FUNCTION FOUTE QuTl (HOST, @)
FUNCTION FCOP2 COPYN (2,

8)
ROCYCS (RBASEL.l)
COPYBK (16, 9)
WRCYCS (BASE!L.!86)
COUNT (91 )

COPYBK (1, L*R),
QUEUE (QBASE2,1)
COPYBK (1, L)
QUEUE (QBASES. 1)
QuT!L (READ, @)

“COPYBK (186, [ M)

FUNCTION FRDZ

¢ FUNCTION FDUST4 =  COUNT (4} )
FUNCTION FGET = GET! X )

¢ FUNCTION FADD = ADD X ,

¢ FUNCTION FURP = 'WRCYCS (BASE!,16)

: FUNCTION FGEAD = COPYBK (18, 1),

¢ FUNCTION FQUE4 = QUEUE (QBASE4., 16)
FUNCTION FDUST3 =  COUNT 4 1

COPYBK (18, [ 3]
ROCYCS (BASEL,16)
ouT2 (WRITE, 28H.

SEEAEIISELESELLILIUIESRELIEETEEIEETRES

DATA MENORY

4
MEMORY RBASE2

d
i68cssesstENEsERERIEEREEEEETERERNTERROERSOITSES

CNTGE

CNTGE

CNTGE

RDCYCS
RDCYCS

CNTGE

8), QUEUE

: DATA EXEC CIPP, L3A8, STARTS )
: DATA EXEC CIPP, LDA®, STARTD )

98

(H

(V/R

(R
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Chapter 7

Mask Processing

The mask processing discussed in this chapter performs the
following conversion of nine points, including the object point
x0:

x0'=F(x0,x1,x2,x3,x4,x5,x6,x7,x8)
The value x0' of the object point x0 is determined by the eight
adjoining points and x0.

Figure 7-1
Mask Processing

+ + + +
| x6 | x7 | x8 |
+ + 4 +
| x4 | x0 | x5 |
+ + + +
| x1 | x2 | x3 |
+ + + +

Mask process1ng can be roughly divided structurally into two
processing parts: the image memory address generation part and
the computation part.

This Application Library contains three examples of mask
processing: smoothing, thinnlng, and edge detection. Image
memory address generation, which is common to all these examples,
is explained as a separate item.

7.1 Common Processing (Image Memory Address Generation)

7.1.1 Processing Explained

As the name implies, image memory address generation
concerns the generation of addresses for image memory
read/write. These addresses are required in the
computational processing discussed later in this chapter.
Image memory address generation consists of the following
three parts:

(1) a read address generation part which generates read
addresses and reads the data;

(2) a write address generation part which generates write
addresses and writes the data processed in the computation
part; and

(3) a final processing part which writes final data and
initializes some of the FTT fields for the AG & FC
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instruction.

The address generation schemes employed in the read address
generation part and the write address generation part share
the same flow graph organization.

The final processing part reinitializes the counters in the
FTT that underwent changes in value as a result of the
actions of the read address generation part, write address
generation part, and the computation part (discussed later).
This ensures that these counters will be ready to operate
correctly when the next startup token is input without
downloading the same program to the uPD7281 again.

7.1.2 Algorithm

All mask processing programs described in this chapter
require data occupying an area three dots horizontally by
three dots vertically, as shown in Figure 7-1, Consequently,
the reading of image memory source area is done in units of
a total of three words: one word horizontally and three
lines vertically. The writing is done in l-word units.

Further, since an object point x0 needs the adjoining eight
points, the read address generation part of this program
generates read addresses for the line containing the point
x0 and the lines above and below simultaneously. Therefore,
the processing of H words horizontally involves the
generation of 3 x H readout addresses.

As a result, the address for the source image area in this
program is specified as (b), rather than (a) in Figure 7-2.

Figure 7-2
Address Correspondence

DATA REQUIRED FOR ) -
THE COMPUTATION OF —
LINE 1 OF THE IMAGE a) v
TO BE PROCESSED

1 WORD

CORRESPONDING ADDRESS (a) SOURCE IMAGE ARga

(b) DESTINATION IMAGE AREA
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Further, when one word of write data is generated from three
words of read data, the LSB of the output data is
indeterminate, as will be discussed later (see Section 7.2,
"Computational Processing®). To get around these problems,
data obtained in this program is first stored in the Data
Memory (DM) of the uPD7281, and the writing of data from the
next computational pass is done by reading it from the DM
and adding one bit to it, This scheme, however, requires
that each source area have preceding data and each data at
the right margin of screen have successive data. In response
to this requirement image data is treated as a loop in this
program, as shown in Figure 7-3(b), on the assumption that,
in general, data at the right or left edge of a screen is
not significant. This means that only the points A
(starting point) and B (end point) in the figure need to be
considered. The data read from the DM at the starting point
A is invalidated (through processing done in the computation
part), and the data value from bit 2 at the end point (next
to the LSB) is written to the LSB, which was indeterminate
(final processing part).

Figure 7-3
A View of Image Data

o Lwems T C::E:>

A H WORDS
/

V LINES
>
/.

LINES

L =

SOURCE IMAGE AREA Q

L.

B
(b) PROGRAM VIEW

(a) IMAGE MEMORY

In a'binary image, an image in memory can be a 0-background
image or a l-background image, depending on the type of
background data utilized. Mask processing produces different
results depending on the image's background. For instance,
if a 0-background thinning program was used on a 1l-
background graphic image, the line would get wider instead
of narrower. However, the same program can be used for both
0-background and l-background graphic image processing tasks
if the computation parts of a program are written for the 0
background and data bits are reversed from0 to 1 or from 1
to 0, as appropriate.
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Therefore, the C bit of the STARTD token (which indicates
the starting address of a destination image area) is used in
this program to determine whether the destination image has
a 0-background or a l-background. If it has a l-background
the data is reversed between the input and output parts of
the computation part. This requires that the C bit of image
data is always 0 in this program.

7.1.3 Parameters and Their Applicable Ranges
<Assembler-Coded Parameters>

L ... Number of image memory words in horizontal direction

H ... Number of source image area (SRC) words in horizontal
direction .

V ... Number of source image area (SRC) lines in vertical
direction

R ... Number of segments read from the image memory
(vertical direction)

<Startup Token-Defined Parameters>

STARTS ... Source image area (SRC) starting address - L
(Note 1)
STARTD ... Destination image area (DST) starting address

Note 1: Mask processing needs the line above for processing.
(i.e., if SRC starting address = 0000H and L = 0080H, then
STARTS = 0000H - 0080H = FF80H)

The values that can be assigned to these parameters are
indicated in the table below:

T Parameter I Applicable range T (Value set in the T
1 ! | example progtam)_l
I L | 0 - 255 | (64) T
I B 1 - 256 1 (32) 1
| v R-25 x R | (512) |
; R I 1 - 256 T ( 2) I
T STARTS ; 0 - 65535 ? (FFROH) * T
| smarm | 0 - 65535 T (20H) * 1

* : Although STARTS and STARTD are variables (i.e.,
addresses), they are given default values since they

102



are used in the assembler DATA statement. When the
uPD7281 is started up, the starting addresses of the
SRC and DST areas are input as execution tokens.

Since no provision is made in this program for switching
banks, you should exercise care in setting values for
parameters H and V.

7.1.4 Flow Graph Explained

A flow graph of the common processing part (image memory
address generation) is shown in Figure 7-4. A combination of
this flow graph and one of the computational part described
below makes up a flow graph of a mask processing program.

<Explanation of Main Nodes>

FT1 and FT2 extract the information that determine whether
the image has a 0O-background or a l-background from the C
bit of the STARTD token, and store the information in the
Data Memory (DM). This information is used in the
computation part.

FT3, FT4, and FT5 generate destination image write addresses
based on STARTD. Two steps, FT3 and FT4, are required
because there can be more than 257 vertical lines.

FT6, FT7, and FT8 serve to synchronize the generation of
addresses. FT8 synchronizes the activity of the read address
generation part as well. FT10 through FT12 and FT15 through
FT17 generate source image read addresses upon receipt of
the STARTS token (the source image area starting address
minus L) In this process FT17 works in synchronization with
the computation part.

FT13 is a node for creating addresses for three contiguous
vertical words.

FT27 and FT28 are nodes for creating read tokens and write
tokens, respectively.

In this process the arc X46 is a write data token generated
in the computation part.

The word at the end is processed in the computation part.
The results of the computation are stored in the Data Memory
(DM) of the uPD7281, and the token returns to FT17. This
causes FT12, FT16, FT1l1, FT15, and FT10 to be driven, in
this order, and the token is transferred to the final
processing part.

The final processing part takes the results of processing
the end word in FT18, FTS59, FT73, FT21, FT58, and FT23 and
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sets the LSB of this word equal to the value of the second
bit. Then the destination image data is complete.

In addition to this data generation, FT59 updates the read
counter located in the FTT part so that the values in this
read counter will indicate that all data have been read from
the storage area. As a result, FT59 keeps itself in
synchronization with the computation part.

The process of performing an OR operation in FT59 requires
another operand. Data for this operand is generated in FT18.

FT73 performs copying by storing one copy in the Data Memory
(DM). Setting FTRC = 1 keeps the input data at the node from
being erased.

FT21 and FT58 extract bit 2 from this data and set it to the
value of the LSB. FT73 generates processing result data;
this is stored in the Data Memory (DM).

The processing result data copied in FT24 is sent to the
computation part and written to the destination image area.
The other copy data waits for completion of the generation
of destination area write addresses (FT25). It then
initializes the uPD7281 counters (arc X42, X43) and issues a
completion notification token (FT29).
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Figure 7-4
A Flow Graph of a Mask Processing Image Memory
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7.2

7.1.5 Tips on Writing Flow Graphs

To ensure the proper execution of this program, the counters
in the FTT field must be initialized. (This is due to the
way the computational part works, as will be discussed
later.) You must be careful when initializing the ACC
instruction and the FTT for the AG & FC instruction if the
program, once downloaded to the uPD7281, is to be run
multiple times with startup tokens.

For example, the CUT instruction, which cuts as many FTRC=0
tokens as specified will not perform a cut operation if the
instruction's counter is not cleared before a new run. The
CUT counter can be cleared by sending an FTRC=1 token at the
tail end of a run.

The Write Counter (WC) field of the WRCYCS instruction is
set to 1 so that one piece of data is written to the DM
before the start of a run. This causes the counterpart
instruction RDCYCS in FT59 to read data that appears as if
it were written during the preceding pass. Thus, the data
that was processed in the computation part is stored in the
DM by FT57, and the writing to the image memory is done by
getting data that was stored in the preceding pass and by
appending 1 bit to the LSB.

7.1.6 Assembler Source Listing

See Sections 7.2.1.4, 7.2.2.5., and 7.2.3.4.

Computation Processing

During data generation in the computation part, the determination
of "0" or "1" on the object point x0' is made by performing the F
operation on the adjoining eight points, as shown in Figure 7-5.

Figure 7-5
Determination of Object Point x0'

+ + + +
| x6 | x7 | x8 |
. M " N
+ + + +
| x4 | x0 | x5 |
N 4 s +
+ + + +
| x1 | x2 | x3 |
+ + + +

x0' = F(x0, x1, x2, ..., x8)

where x0' represents x0 after transformation.
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For this purpose, one word of destination image data is generated
by reading a total of three words from the source image area
lines vertically (as explained in Section 7.1). To be more
specific, the one word of written data is derived from a total of
18 x 3 bits of data: the 3 words of data read from the source
image area and bits 1 and 0 of the 3-word data that was read in
the preceding pass (see Figure 7-6).

The low-order 15 bits of the 16-bit data thus generated are
stored in the DM of the uPD7281, along with an appended LSB of 0.
The leading bit is combined with 15 bits that were stored in the
DM in the preceding pass to form one word of destination image
data which is written to the target image area. This is because
not all eight bits in the positions adjoining the LSB of the word
are available during a pass, preventing the execution of the F
operation. The determination of value of the LSB, therefore, has
to be deferred until the next pass.

To facilitate subsequent computations, the LSB is set to 0.

Figure 7-6
Creation of 1l-Word Data to be Written

2 LSB-SIDE BITS FROM DATA IN PRECEDING PASS

2 LSB-SIDR BITS PROM
DATA IN PRECEDING PASS 3 WORDS THAT HAVE BEEN READ

pa——

rll_‘}!_sulilu’ulOB570543210

L-

1

Lo z Z

- A\

LEADING 1 BIT
88 e ﬁ LS8
|15 BrTs oF DATA ™ P PASS) [ 15 BITS OF MEWLY GENERATED DATA jo]
DATA TO BE WRITTEN TO DESTINATION IMAGE AREA STORE IN DM

7.2.1 Smoothing

7.2.1.1 Processing Explained

Smoothing is used to remove minor noise data from images and
to smooth out their edges. The processing involves masking
using object point x0 and picture element data in the
adjoining points (8-point neighborhood).
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7.2.1.2 Algorithm

Point x0' is determined by the use of a three by three mask
shown in Figure 7-7. The point x0' is a mapping of x0.

Figure 7-7
Smoothing Algorithm

Xe | X7 | x4 1 2 1 X=x,+2x3+x,
Xe | Xo | x4 2 4 2 +2x,+4xo+2x,
X X2 X3 1 2 1 +xe+2x,+x,
X0 AND ADJOINING POINTS 3 X 3 MKSK
l......
x,_{ X6
o ...... x<°

To increase processing speed in actual situations, the three
words read from the source image area divided into eight
areas of four bits each so that two points can be obtained
at a time by the use of a DM table lookup (the resultant
values of 3 x 3 mask operation).
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Figure 7-8
Data Decomposition and Assembly

TWO LSB-SIDE BITS OF
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b ] |
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Although this processing mainly involves computations on x0
and the adjoining points, a table lookup is performed in
this program on the basis of 4-bit decomposition data to
obtain the sum of the weights of the lines in terms of an
high-order byte (x1) and a low-order byte (x2). In other
words, calculations on nine adjoining points centered on
each of a22 and a23 are carried on simultaneously. This
processing is performed in parallel on the eight 4-bit
decomposition data.

Figure 7-9
A Method of Obtaining Weights of Adjoining 9 Points

ONE WORD

P i b
A:+Zn utay) (a1a+2813+8y)

81y | 812 | 83 | By

————
B3y | 823 | 323 | Bg

(2ag1+4820+2823) (2223 +4823+2824)

(an+2a2+833)  (3z+2as3+83 )

e T = ]

SUM OF 3 WORDS

By this algorithm, however, x0' becomes 1 if x0, x1, x2, x4
are all equal to 1. This means that, no matter how many
times smoothing is done, there will be no change in the
results. Therefore, this type of smoothing would have no
effect on rectangular figures.

To overcome this difficulty, the data bits are reversed when
they are read from the source image area and are reversed
back again when they are written out. This procedure ensures
x0'=0 and successful smoothing (see Figure 7-10).
Consequently, smoothing is done in one of two ways: with and
without bit reversal. These procedures are differentiated by
means of the C bit in the startup token (as explained
previously). These two procedures can be employed either
singly or in combination.
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Figure 7-10
Smoothing of a Rectangular Figure

SOURCE IMAGE o CHANGE
[ X X X J [ X N X
o000 0000

EXECUTION OF SMOOTHING ®
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XXX 6o oo
[ X X X J (A N X ]
r
:: BIT REVERSAL
L
1
«\";-
SMOOTHED
0000 00
Y X EKnl [ X } o0
[ X X X J [ ] ®| execurion or
0000 ar mveas | @ @| SMOOTHING
—— R o
o000 [ [ J
D00 [ X ] [ X J
000000

7.2.1.3 Flow Graph Explained

Figure 7-12 shows a flow graph (computation part) for a
smoothing operation. The smoothing program is made up of
this flow graph and a flow graph which is discussed in
Section 7.1.

<Explanation of Main Nodes>

FT30 is the node for reversing image data bits in cases
where the background is 1. Whether a given background is 0
or 1 is determined on the basis of bit C of the startup
token STARTD (Figure 7-12).

FT31, FT32, and FT35 through FT48 produce a computed value X
from source image data.

FT31 distributes the read data according to lines in the
vertical direction. FT32 and FT35 through FT43 create 4-bit

data. FT44 and FT45 determine line values in order to obtain

a anmpni—aﬂ value X hv table logockupr, PT47 and FPT48 cbtain

the computed value x by adding together the line values
determined in FT44 and FT45.

In addition to creating 4-bit data, FT32 copies data so that
the lowest two bits of the data can be stored in the DM
(LSBl, LSB2, and LSB3 areas). This is necessary to perform
computations on the next data.
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FT49 through FT54 evaluate the computed value X. FT49
decomposes the binary values within a word obtained in FT48,
and FTS0 and FT51 determine whether these values are 0 or 1.
FT52 and FT53 place these values in their proper positions
within the word and generate one word of data. It should be
noted that bit 16 in Figure 7-8 is placed on the LSB side
within the word (see Figure 7-11).

Figure 7-11
One-Word Data Generated in FTS54

| BOBVROVOODOOODDD: |  sex © I ricume 7.8
L

o

> I3
B00VVOODOODDDDS  oara carazwen 1w rrse

FT56 and FT57 change the value of bit 16 of the l6-bit data
obtained in FT54 to 0 and store the result in the DM (in the
ANS area) for use in the computation of the subsequent step.

FT58, FT59, and FT60 add bit 16 of the data obtained in FTS54
to the 15-bit data that was stored in the preceding
computation pass. They pass the result to the address
generation part.

In the above process the leading edge word in the source
image area has invalid data in the ANS area of the DM. Node
FT60 erases this invalid data.

The tail end word left in the ANS area of the DM with its
LSB still undetermined is sent to the final processing part
of the address generation part, where it undergoes final
processing.

The LSB data of this write data is undetermined (and is set
to 0); in the program the value of the second lowest bit is
used as an LSB value. This is done on the assumption that
such a substitution made on the right hand edge of the
area to be processed will have no appreciable impact.

FT62, FT65, and FT68-FT73 store the low-order two bits in
the LSBl - LSB3 area of the DM for use in subsequent
computation. Nodes FT68 - FT70 ensure synchronization with

the computation operations.
FT73 signals completion of the processing of a line to the

address generation part. FTRC is set to 1 so that the data
will not be erased.
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Figure 7-12
A Flow Graph of Smoothing Processing
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7.2.1.4 Assembler Source Listing

COPNON A WN—

—————
BN eWN~—

1060800000808 08008880800008008880080000800808

H SNOOTH OPERATION

: EQUATE

MODULE IPP = 8 ;
EQUATE L = 54 :
EQUATE H z 32 :
EQUATE : 512 ;
EQUATE R = 2 :
EQUATE HOST = 0 ;

: EQUATE READ = s :
: EQUATE URITE = s ;
: EQUATE STARTS = 0 ;
STARTD = 32 :

TEISL NN NNENETERIRILEIIRIEERIEINOCE

: INPUT-OUTPUT
INPUT  LSAQ. LDAB. RDATA AT @ ;
: OUTPUT RDAT. UDAT. WADR. PEND

H
T8I ESEETEINEEININISELESEEANSEEEEEIOUSS

i LINK TABLE
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Xt X2 = FT1
= FT2
X3, X4, XS = FT3
X6 X7, X8 = FT4
X9, Xie, Xtl = FTS
X12 = FT6
X13 s FTT
X14 H F78
X19, X290, X21 = FTL@
X22. X23, X24 = FT1L
X25. X26. X27 = FT12
X28. X29 = FT13
X30 = FT14
X31 = FT1S
X32 = FT18
X33 H FT17
X34 = FT18
X35 = FTS9
X36 H FT73
X37 = FT21
%38 = FTS8
X39 = FT23
X409, X41 = FT24
X4S H FT2S

XS

R R R R N RN,



¢ LINK

LINK

¢ LINK

X78,
X42

X84
X8s
X41
X46
X87
Xxas
X89
X320
X91
X92
X33
X94
XSS

X36

X43, X44
WADR

X49. Xse
XS2
XS4
XS6

X73,

X808, X81.

X82

OO O O O O O O I T U I T T T L L T L T T T I T L T T T T T R TR T R TR TR R TR TR R R TR TR )
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(X4S
(X28
(X48,
(X484

(RDATA
4

(X48
(X49
(XS@
(XS1
(XS57
(XS8
(XS9
(XS3
(X861
(X62
(X63
(X67,
(XSS
(X64
(X65
(X66
(%68,
(X790
(X71
(X72
(X73
(X74
(X7S
X717
(X78
(X42
(X79
(X84
(X85,
(X41
(XS2

X447

X69

X43

X38e

X8l

X82

» X985

[V RVEVRY)
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e = b =
—— - - —
OVO~NONEWN—

173:
179:

ISESEISESE0INEN0000ERRRETNTREETTRININIITSTS

FUNCTION

: FUNCTION
: FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
: FUNCTION
: FUNCTION
: FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
: FUNCTION
: FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
: FUNCTION
: FUNCTION

FUNCTION

: FUNCTION
: FUNCTION
¢ FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
: FUNCTION
: FUNCTION
¢ FUNCTICON
¢ FUNCTION
: FUNCTION
© FUNCTICN
¢ FUNCTION

FUNCTION

¢ FUNCTION

FUNCTION

: FUNCTION
. FUNCTION
* FUNCTION
: FUNCTION
: FUNCTION
© FUNCTION
+ FUNCTION
: FUNCTION
¢ FUNCTION
* FUNCTION
¢ FUNCTION
< FUNCTION

. FUNCTION

FUNCTION

FUNCTION TABLE

FT1 = COPYC XY ).
FT2 = WRCYCS (Tl1. 1)
FT3 H COPYBK (1 ).
FT4 = COPYBK (1. L.
FTS = COPYBK  (!. 1),
FT6 = QUEUE (QUEL, 1)
FT7 = QUEUE (QUE2, 1)
FT8 = QUEUE (QUE3, 1)
FTI® = COPYBK (1. 2,
FT11 = COPYBK 1, L)
FTI12 = COPYBK (I, 1),
FT13 = CoPYBK 3. L
FT14 = QUEUE (QUE4, 1)
FTIS = QUEUE (QUES, 1)
FT16 = QUEUE (QUES, 1)
FT17 = QUEWE (QUET, 1)
FT18 = RDCYCS (ZERO. 1)
FT21 =  SHR.

FT23 = OR,

FT24 = COPYBK s )
FT2S = QUEUE (QUEL4, 1)
FT26 = COPYM 3, [}]
FT27 = QUT! (READ., @)
FT28 = ouT2 (WRITE, 28H,
FT29 = OUT! (HOST, @)
FT30 = NOT (CNQP )y
FT31 = DIST 3 )
FT32 = COPYBK (8, 8)
FT3S = AND,

FT36 =  AND,

FT37 = AND.,

FT38 = SHR»

FT39 = SHR,

FT48 =  SHR,

FT41 = OR.,

FT42 = OR,

FT43 = OR,

FT44 = ROIDX (FILT!L )
FT4S = RDIDX (FILT2 )
FT47 = ADD.

FT48 = ADD.

FT49 = SHR Xy b
FTS@ =  CAHPNOM  (GT )y
FTSI = CHMPNOM (GT )
FTS2 = HUL Y >
FTS3 = HUL Y )
FTS4 =  ACC.

FTSS = [ofe] 241 (S, )
FTS6 =  AND,

FTS7 H WRCYCS C(ANS., 2).
FTS8 = AND,

FTS9 = OR.,

FT60Q = cuT (1 )
FT62 = AND,

FT6S = SHL,

FT68 = QUEUE (QUELL. 1)
FT69 = QUEUE (QUEL2, 1)
FT70 = QUEUE (QUEL3, 1)
FT71 = WRCYC3 (LSBl, 1)
FT72 = WRCYCS  (LSBZ, i)
FT?T3 = WRCYCS  (LSB3. )
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2,

RDCYCS

CNTGE
CNTGE

CNTGE™  (H

CNTGE
CNTGE
CNTGE

RDCYCS
RDCYCS

QUEUE
RDCYCS

RDCYC3
20CYCS
ROCYC3
ROCYCS
R0CYCS
RDCYCS
ROCYCS
RICYCS
ROCYCS

QUEUE
QUEUE
RDCYCS
ROCYC3
ROCYCS
ROCYC3
RDCYCS
COUNT

ROCYC3
1

RDCYCS
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(R
(V/R

(V/R
(H
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(MASK,
(MASK,
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(SHTTBL
(SHTTBL
(SHTTBL
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180:
181:
182:
183:
184:
18S:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
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198:
199:
200:
201:
202:
203:
204:
20S:
206:
207:
208:
209:
2180:
211
212:
213:
214:
215:
216:
21T
218:
219:

20:
221:
222:
223:
224:
228:
226:
227:
228:
229:
230:
231:
232:
233:
234:
23S:
236:
237:
238:
239:
240:

.
.
L
.
.
.
.
.
.

NENORY
HEMORY

MENORY
HENORY
MENORY
MENORY
MEMORY

MEMORY

MEMORY
MEMORY
MENORY
MENORY
MEMORY
MEMORY
MEMORY
MEMORY

MEMORY

MENORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MENMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY

DATA MEMORY

T!
MASK

SHTTBL
LS8l
LSB2
LSB3
FILTI

FILT2

ZERO
ONE
TWO
THREE
EIGHT
THR!
THR2
s]e]s)

EVEN

RMASK
ANS
QUEL
QUE2
QUE3
QUE4
QUES
QUES
QUE?7
QUE3
QUES
QUEL®
QUEL!
QUEL2
QUEL3
QUEL4

[ O R A L T T T TR L T D T LA T 1}

H
S5Q0H
0001H,
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0030H,
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2H,
404H,
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4000H,
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404H.
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1800H,
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LSAQ,
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7.2.2 Thinning

7.2.2.1 Processing Explained

The purpose of this procedure is to erase the contours of a
binary image line by line, using the adjoining point data.
By repeatedly executing this program it is possible to
determiné the center of a linear graph.

7.2.2,2 Algorithm
The point x0' after transformation of point x0 is determined

by performing the operation F on the adjoining eight points,
as shown in Figure 7-13,

Figure 7-13
Determination of Object Point x0'
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x0' = F(x0, x1, x2, x3, x4, x5, x6, x7, x8)
= x0 . G(x1, x2, x3, x4, x5, x6, x7, x8)

where G(.) is a function yielding 1 or 0, depending on the
particular pattern of the adjoining eight points. Hence, to
make object point x0' = 0, you need only plug in 0 for G.
To make x0' = x0, plug in 1 for G.

A thinning program working with a 0 background assigns 0 or
1 to each of the 256 patterns generated by 8 points (points
x1 through x8). and executes the processing by means of a
table lookup. However, instead of erasing points in all
eight directions, the program performs the erasure from four
directions in two passes. This is because, in parallel
processing as opposed to serial processing, it would be
difficult to perform a thinning, such as reducing a 2-dot
line into a 1-dot line, if the points were erased from eight
directions,
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Figure 7-14
Direction of Erasure

; { /’<

For table lookup, the adjoining eight points are ordered as
shown in Figure 7-15.

Figure 7-15
Ordering of Adjoining Eight Points

5 4 3 2 3 0

rl{lum&m
ANEAY \\m//

Unlike the smoothing and edge detection program, this
program cannot determine several points at the same time. A
total of 256 tables are required to determine one point.
Since the DM has only 512 locations, 18 bits (16 bits for a
word plus the 2 LSB bits obtained previously) are divided
into 16 groups of 3 bits each, and a point is determined for
each of these groups (Figure 7-16).

In this program 15 patterns are used to erase a point in
Figure 7-14(a) and Figure 7-14(b), for a total of 30
patterns.

The 30 patterns used in this program are not necessarily the
best possible patterns for producing good quality images. In
some cases it would be necessary to generate and try various
patterns to arrive at an appropriate pattern for the
particular application.
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Figure 7-16
Data Decomposition and Assembly
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Values produced by table lookups can consist of values for
Figure 7-14(a) and those for Figure 7-14(b). The appropriate
values should be used.

This program uses a CHGDIR token, which has a value of 0 or
8, to control the number of right shifts.

7.2,2.3 Flow Graph Explained

Shown in Figure 7-17 is a thinning flow graph (computation
part) that, together with the image memory address
generation part flow graph discussed in Section 7.1, makes
up the thinning program.

FT30 complements image data bits froml to 0 and 0 to 1 in
cases where the background is 1.

FT21, FT31, FT32 and FT35 through FT51 determine transformed
object point data from source image data.

FT31 distributes source image data. FT32 and FT35 through
FT43 create data (Figure 7-16(b)) to serve as units of
computation.

This thinning requires the generation of data for the table
lookup as shown in Figure 7-15. For this purpose, data are
directed to bit positions 7, 6, and 5 in FT38 (Figure 7-15)
and to the lowest three bit positions in FT39 and FT40.

FT41 through FT43 treat data as units of computation by
adding to each datum either a 1 bit or the 2 LSB-side bits
in the data from the preceding pass (Note 1).

FT44, FT45, FT46, and FT48 through FT50 are used to
determine the values of G, shown in Figure 7-13. The bits
7-5 and bits 2-0 in Figure 7-15 are generated in FT41 and
FT43. FT45 makes two copies of data (Note 2) and generates
bits 4 and 3 by performing a table lookup (MTBl in the DM).

After the generation of lookup table data, the values of G
are determined through a table lookup in FT49.

However, since the values so obtained include both values
for Figure 7-14(a) and Figure 7-14(b), FT50 chooses between
these sets of values.

FT47 and FT21 extract data on point x0 from the other copy
of data made in FT45, and FT51 determines the computed value
of F from the extracted data.

FT52 and FT53 reconstitute the object point x0' after the

transformation of a word which is organized as indicated in
Figure 7-16(c).
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FT54 copies the destination image data sought and furnishes
this data for processing in the subsequent steps.

FT55 and FT56 add 0 to the LSBs of the low-order 15 bits
(bits 15-1 in Figure 7-16(c)) of the destination image data
obtained in FT53, writes the results to the DM (the ANS
area), and uses them in the subsequent computation.

FT57, FT59, and FT60 extract bit 16 (the MSB) from the
destination image data, make it into LSB data, add to it the
high-order 15 bits of data which was stored in the DM in the
previous pass, and pass the results onto the address
generation part.

The procedure employed in this program for handling the
leading and ending edges is that same as that used in the
smoothing program. Refer to Section 7.2.1 for further
details.

FT61 - FT73 are nodes used for storing the lowest two bits
and the LSB bit of the read data copied in FT32 in the LSB1
- LSB3 of the DM, for use in subsequent computations (Note
1). FT61 - FT63 are concerned with keeping these operations
in synchronization with the computational steps.

FT45 perform copying operations by using NOP (Note 2).

Note 1l: See Section 7.2.2.4.

Note 2: Generally COPYBK is used to copy data. This
program uses the XX output of the NOP instruction
to preclude overflows on the Generate Queue of the
uPD7281.
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Figure 7-17
A Thinning Flow Graph
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7.2.2.4 Tips on Writing Flow Graphs

In the smoothing program two LSB bits of source image data
were stored in the DM of the uPD7281 for use in subsequent
processing. In this thinning program the lowest two bits
from a preceding pass can be used in two ways: use two bits
to generate 3-bit data, or use only one bit to generate 3-
bit data. Therefore, this program provides separate 2-bit
and 1l-bit storage locations in the DM. Although these spaces
can be considered as one area, comprised of LSBl1 - LSB3,
they canbe differentiated by means of a table which will be
discussed later. This requires that copies of the source
image data be generated.

When 3-bit data is made in conjunction with the 1-bit data
from the preceding pass, the data is read from LSB1, LSB2,
and LSB3 of the DM, and the OR operation is performed on
them. It would be a simple matter if it were possible to
place the LSBl bit from the preceding pass at LSBl + 1 (or
LSB2 + 1, or LSB3 + 1). However, the WRCYCS instruction can
assign base addresses only in even-numbered addresses of the
DM. To provide for this fact, the space for storing 1l-bit
data is moved back by one position to reverse the order.
Accordingly, the MASK table is used in creating 3-bit data
from the source image data. The tables SHTTBL1 and SHTTBL2
used in resequencing the data are ordered differently to
reflect this fact (see Line 193 in the Assembler Source
listing: ...LSBl + 2 ...).

7.2.2.5 Assembler Source Listing

1

20 3

3: THIN OPERATION
4:

"
@™

8: 3

7. MODULE [PP
8:

39: EQUATE L
@: EQUATE H
1: EQUATE v
2% EQUATE R

14 EQUATE HOST
15: EQUATE READ
16: EQUATE UWRITE

18: EQUATE STARTS
19: EQUATE 3TARTD

LNTNTRT]
N
]

[T
>

QFFBAH
20H

21 T80sessNeNEANIINAINIEINIINEIBEIELIEIROITTSES

[HPUT-QUTPUT

27: ENPUT LSA®., LDAR. CHGDIR, RDATA AT @
293 OUTPUT RDAT. WDAT, WADR, PEND

BOCOILI0LE000S00R00S000C0BIESROIIRTITISTS

LINK TABLE

X1 X2 = FTL (LDAQ ) :
= FT2 (X2 ) H

X3 X4, XS = FT3 (X12. X1 ) ;

X6 X7, X8 s FT4 (X13. X3 ) )

X9 Xi0 X1t = FTS (X14, X6 ) d
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X42
X4l

X28.
X23.
X28,
X29

X85S

. X79, X8@,

Xx89
X93

= FT8 (X4, X8 )
= FT7 (X7, Xt )
= FT8 (X8, X29 )
X21 = FT10 (X31, LSAe )
X24 = FTLL (X32, X19 )
X27 = FT12 (X33, X22 )
= FT13 (X25 )
= FT1S (X298,  X24 >
= FT16 (X23. X27 )
5 FTI7 (X268 X98 )
= FT18 (X2 )
= FTS9 (X34 )
z FT73 « X35 )
= FT21 (X38 )
= FTS8 (x37 )
H FT23 (X38 )
= FT24 (X39 )
= FT2S (X48. XS )
X44 = FT268 (%45 )
=z FT27 (X28 )
= FT28 (X46, X9 )
= FT29 (X44 >
= FT30 (RDATA )
Xse = FT31 < «X47 )
= FT32 (X438 )
= FT32 (X49 )
= FT32 (XS0 )
= FT3S (XSl )
= FT38 (XS7 )
= FT4l (¥s8 )
= FT44 (XS9, X68 )
H FT36 (XS3 )
= FT39 (X61 )
= FT42 (X62 )
= FT4S (X863 )
= FT37 (XSS )
= FT40 (X686 )
= FT43 (X67 )
= FT46 (X64 )
= FT48 (X6@., . X69 )
= FT49 X70 )
= FTS0 (X7t )
= FT47 (X65 )
= FT21 (XT3 )
= FTS1 (%74, %72 )
= FT52 (X7S )
= FTS3 (X768 )
X81, X82 = FTS54 X77 )
= FTSS (X78 )
= FTS7 (X79 )
= FTS9 (X83 )
= FT61 (XS2, X8e )
= FT62 (XS4, X81 )
= FT63 (XS8., X82 )
= FT4S (X85 )
= FT4S (X86 )
= FT4S (XeT )
= FT64 (X88 )
= FTBS (X94 )
= FT73 < +X108 )
= FTS8 (X89 )
= FT66 (X97 )
= FT64 (X909 )
= FTSS (X399 )
FTS8 (X31 )

FT87 (X101 )

FT64 (X92 )

FTSS (X1e3 )

FTS8 (X893 )

FT87 (X105 )

= FT68 (X35 )
= FT69 (X98 )
= FT78 (X109 )
= FT71 (X102 )
= FT72 (X184 )
H FTSS (X78 )
= FTS6 (X42 )
= FT60 (X84.  X43 )
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¢ LINK

LNk

:
B
d

¢ FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
: FUNCTION
: FUNCTION
© FUNCTION
: FUNCTION
: FUNCTION
: FUNCTION
¢ FUNCTION
¢ FUNCTION
© FUNCTION
¢ FUNCTION
. FUNCTION

FUNCTION

: FUNCTION
: FUNCTION
¢ FUNCTION
« FUNCTION
: FUNCTION
¢ FUNCTION

FUNCTION
FUNCT[ON

: FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION

FUNCTION

+ FUNCTION
© FUNCTION
: FUNCTION
+ FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
¢ FUNCTION
© FUNCTION
: FUNCTION
¢ FUNCTION
: FUNCTION
© FUNCTION
: FUNCTION
: FUNCTION

FUNCTION

: FUNCTION
¢ FUNCTION

FUNCTICN

© FUNCTION
¢ FUNCTION
¢ FUNCTIOW
: FUNCTION
¢ FUNCTION
© FUNCTICN
: FUNCTION
¢ FUNCTION
: FUNCTION
© FUNCTION
: FUNCTION
: FUNCTION
© FUNCTION
¢ FUNCTION
© FUNCTION
: FUNCTION

: FUNCTION

FUNCTION TABLE

L L T T T T T T R R N R NN R R N N

WRCYCS
WRCYCS

WRCYCS

H FT30
H FTXX

0600500880000 00000000000000008800 000000

1
]

L

1

1

1

1
1. [}
1. L
(1, 1
(3. L
(QUES. |
(QUEE. 1
(QUET. 1
(ZERO, |
. 3
(QUE4. 1)
3. 8)
(READ, @)
(URITE, 2011,
(HOST, @)

(CNOP ).

3 )
(16, )

(XX )
(NTBIL )

(nTB2 )

(S, [}
C(ANS, 2),

1l

(QUE!2, 1
(QUEL3., 1
(QUEL4. 1

~ oo~

(LSB1. |
(LSB1+2,1
(LSB2. 1
(LSB2+2.1
(LSB3, 1
(LSB3+2,1

(CHOT. 1)

)
)
)
)
)
)
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(Xa1 )
(CHGDIR )
ROCYCS (TI1. n
CNTGE R )
CNTGE (V/R )
CNTGE ai )
CNTGE R )
CNTGE /R )
CNTGE (H )
RDCYCSE (ONE. 1
ROCYCS (LSB3., 1)
QUEUE (QUEB, 16)
RDCYCS (Tl1. 1)
ROCYCS (MASK. (6)
ROCYCS (MASK. 16)
ROCYCS (MASK. 18)
ROCYCS (SHTTBL!.
RDCYCS (SHTTBL2.
ROCYCS (SHTTBL2,
ROCYCS (LSBL. 16)
ROCYCS (LSB2. 16)
ROCYCS (L383, 18)
QUEUE (QUES. 16)
ROCYC3 (TWO. 1%
QUEUVE (QUEL®.,16)
RDCYCS (CHOT, 1)
QUEUE (QUELL.LB)
ROCYCS (SHTTBL2.
COUNT (16 )
RDCYCS (OQNE., n
i —_— e
ROCYCS (FH,
ROCYCS (ONE. 1
ROCYCS  (AN3. 2
ROCYCS (THREE. 1)
ROCYC3 (SIX. 8]
ROCYCS (SEVEN. 1)
ROCYCS (Tua. 1)

18)
16)

18)

18)

i
ki
H
‘
B
H
B
H
H
i
H
.
H



;l.‘.l‘l.'.l..“...l‘.l"..'.‘..""."‘.
203 DATA MEMORY
208: iemvecmecceccccceccescsennn cemeeocacen vee

HE
207: MEMORY TI
208: MEMORY CHOT
209: MENORY MNASK 2800011, OEB0QH. 9CE@AH. A@TIAAH.
210: 23800H, Q1COQH, QOERAH. 007B0H.
211 20380M. 901CAH. QQBEAH. 0007aIl.
2128 20038H. Q00LCH., Q0QQEH. 00Q097TH
213: MENMORY SHTTBLI = 18, 8, 9, 7. 6, S. 4, 3s

214: 20 1+ 04-1+-2,-3,-4,-5 H
215: MEMORY SHTTBL2 = 15.13.14,12.11.18, 9. 8,

216 7. 6. S, 4, 3, 2, L. @ H
217: MEMORY LSBI = ] (]

219% HEMORY LSB2
221 MEMORY LSB3

223: MEMORY ZERO
224: NEMORY ONE
225: MENMORY TWO
226: MEMORY THREE
227: MEMORY SIX
228: MEMORY SEVEN
229: MEMORY FH
23@: NEMORY HTBI
231: MEMORY HMTB2

[ D
9., 8.
e, 9.
e, @,
9. Q.
8. 9.

H
H
B
B
H

z; NOWN -~ ORI DDE

@@H. 08l. BOH, 08H. 10H, IBH. 1QH. 18H
191H, 101H.181H, 101H, 1OLH, 1QLH, 1OLH. LO1H,
1OIH, 1Q1H, LOIH.1@0H, 101H. 181H, LA1H, LAOH,
101H.101H. 181H, 101H. 1011, 101H.Q01H, 80 11,
LQLH, 1QLH, 1QIH. 1OLH, LO1H.181H, 10 1H. 1QQH,
1OLH. 101H, 10LH, 101H, 181H, 101H, 1QLH. LOLH,
L@LH.1@LH, 1Q1H, 18OH. LOLH,181H, 1OLH, LOOH.
10IH. 101H, (81H, 19LH, 1OIH 10LH. 181H. 101H.
|@LH.1@LH, 1QLH. LQLH. LOLH. 18 1H, LOLH, LAOH,
10LH. 18 IR, 1@, 11K, 1OLH. IBLH. 18 1H. 101K,

__ 1QIH.1@IH, 1OIH.1@IH. LOLH, .

IO TOIH O IH 1IN, 1021 1R 181, eI
1OIH.1@1H. L@IH, IQLH. tALH. 1O1H . 1311, 1011,
1OIH IQIH, 1OIH 1@LH. 13(4. 101, 1814, 1BIH.
1@QH. L@H . 1OLH, 100H, 1@ LH.181H, 1A1H. LQQH.
1A1H, 1QIH. 181H. 1OLH, (31, 1O1H. 1O1H. 11N,

TN I IR
iGiH. iB1H IGIH, 1BIH, (OIH. IBIH, 1BIH. LBLH.

1QtH, 101H, IOIH 181H. 1OLH. 18LIH 131H. i01H,
11H.101H . 1OLH, 11H, 1OLH. 1BIH, IQLH.1QLH.
101H.101H, 1OIH, 101H,181H. 101H, 80 H,801H.
1OLH, 181H, LOLH, LOLIH, |OIH. I3LH. LOIH. 1QLH,
101H. 181H. 101H. 1O1H, 1Q1H, 1QL1H. . 1BLH, LBLH,
101H, 131H, LQLH, IQLIH, 1QLH, IQIH.LALH. LALH.
19IH. 101H. 181H, 1QLIH, 1OIH. IQIH . LOIH, 101N,
101H. 1@tH, 181H, 1QLH, 1OLH, 1QLH.1@1H. 1QAH.,
191H, 101H, 101H, IOIH. 1Q1H, 181H, 101, 1Q1H,
181H, 18LH. L1OLH. 1QIH. 1@IH, IOLH. LALH.101H.
0314, 101H.101H, 1OLH.001H, 101H,AQIH. QB 1H,
101H, 1@LH, 1O1H, LOLH, 1OIH. 1OLH. IQLH. 1DLH.
191H. 1910, 181H. 10IH. 1O1H, 181H, 101H.131H,
190H. 10@H, 10IH, 100H, 1@LH, 1@LH. 13LH.108H.
B01H,101H, 1011, 101H.001H.18111.301:1.221H,
@01H, 101H,10LH,181H,801H. BQIH . 1OLH. 1QLH?

(NN TN N (N U TR TN

i HEMORY ANS

= AREA 2 ) :
: MEMORY QUEL = AREA [ )
: MEMORY QUE2 = AREA «a ) i
: MEMORY QUE3 = AREA « ) i
HMENORY QUE4 = AREA 1 ) i
MEMORY QUES AREA 1 )
: MENMORY QUES = AREA 1 ) i
: MENMORY QUE7 = AREA 1 ) 3
: MENMCRY QUES8 = AREA (18 ) 3
: MEMORY QUE9 = AREA (18 )
QUEL® = AREA (18 ) H
QUEIL = AREA (16 ) H
QUEILI2 = AREA 1 ) B
4 QUEL3 = AREA « )
MEMORY QUEL4 = AREA 1 ) 3

i
1600000000008 888800080800080000880008000
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280:
281:
282:
283:
284:
285:

287:
288:
289:
290:
291:
292

EXEC
EXEC
EXEC

(1PP.

C(1PP,
CIPP,
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CHGDIR. 8
LDA®. STARTD
LSAQ. STARTS



7.2.3 Edge Detection
7.2.3.1 Processing Explained

The purpose of this procedure is to extract contour lines in
which binary image data changes from 0 to 1 and from 1 to O,
Contour lines produced by this program form an 8-way
connected figure* (a line figure consisting of points
connected in eight directions).

* : An 8-way connected figure is one in which any point of
those comprising the figure has an adjoining point that
is comprised of line segments in 8 directions, vertical,
horizontal, and diagonal. In contrast, a figure whose
points are comprised of vertical and horizontal lines
only is called a 4-way connected figure.

7.2.3.2 Algorithm

~
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Figure
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o — o —
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»
o
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In this program transformed object point x0' is determined
by:

x0' = F(x0, x1, x2, x3, x4, x5, x6, x7, x8)

= x0 « x2 « x5 « x7 « x4

In actual processing the program processes four object
points at a time to optimize processing speed. This requires
a three by six area, shown in Figure 7-19. (1)
Specifically, 4-bit data are obtained for each line from 6-
bit data of each line (Figure 7-20). Then, (2) an OR is
performed on the three 4-bit data thus obtained to yield a
mask pattern. (3) The object point data after the
transformation are obtained by applying the AND operation
between the four object points and the mask pattern.

Patterns for the lines are obtained in the program
principally by means of table lookups. Lines 1 and 3
contain points which correspond to x2 and x7 of Figure 7-18
and line 2 contains points which correspond with x4 and x5.
The value of these points enter into operation F. If any of
these points are 0, the transformed object point x0' should
be the same as x0 of the source image.
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Figure 7-19
Data Decomposition and Assembly
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7.2.3.3 Flow Graph Explained

Shown in Figure 7-21 is an edge detection flow graph
(computation part) which, together with the image memory
address generation part flow graph discussed in Section 7.1,
makes up the edge detection program.

<Explanation of Main Nodes>

FT30 reverses image data bits for cases where the background
is 1 (see Section 7.1.2).

FT31, FT32, FT35 through FT48, FT21, and FT24 determine
transformed object points from the source image data. FT31
dfstributes the data that were read to vertical lines. FT32
and FT35 through FT43 create 6-bit data. FT44 and FT46
perform the table lookup on the basis of the 6-bit data to
obtain 4-bit data that form the basis for mask patterns.

Since the creation of transformed object data requires
source image object points, FT24 copies the data that are 1-
bit right shifted in FT21 for position alignment.

FT45 and FT47 are concerned with mask pattern creation. The
patterns created in these nodes are AND-operated with the
source image object points generated in FT21, resulting in
transformed object points.

In addition to creating 6-bit data, FT32 copies the data so
that its lowest two bits can be stored in the DM (the LSBl-
LSB3 area) for use in subsequent computations.

FT49 and FT50 reconstitute the transformation object point
data obtained in FT48 into one word. This word is organized
as shown in Figure 7-19(d).

FT61 and FT62 add 0 to the LSBs of the low-order 15 bits,
(15)-(1), of the destination image data obtained in FT50 and
write the results in the ANS area of the DM for use in
subsequent computations.

FT64, FT59, and FT63 extract the MSB (bit 16) from the
destination image data to use as LSB data, add the high-
order 15 bits that were stored in the DM during the
preceding computation, and pass the results to the address
generation part.

The procedure employed in handling leading and ending edge
data is the same as that used in other programs (see Section
7.2.1.3, "Flow Graph Explained,” Smoothing Program).

FT52, FT53, FT54 through FT57, FT60, and FT73 store the
lowest two bits of read data, copied in FT32, in the LSBl-
LSB3 area of the DM. FT54 through FT56 ensure
synchronization with the computation operations.
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Figure 7-21
An Edge Detection Flow Graph

(Computation Part)
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7.2.3.4

Assembler Source Listing

l: 1508088888808 08008888088880888088888808008083833
2:
3: EDGE DETECTION
4:
§! ieeemeeccccccecacecccccccccnccencan= cemene
6:
7: MODULE [PP = 8 3
8:
9: EQUATE L = 64 ;
18: EQUATE H = 32 H
11: EQUATE V = 512 H
12: EQUATE R = 2 H
130 3
14: EQUATE HOST = ] H
15: EQUATE READ = 4 3
16: EQUATE URITE = s :
17:
18: EQUATE STARTS = QFF80H H
19: EQUATE STARTD = 32 3
20:
21 SAPESSEEEESIEESRNEISEISSB0SEEEBEOEOITONTS

INPUT-QUTPUT

25: femmemmseesemsescsosseosescieocsoceeee
27! iNPUT LDAG. LSA@.  RDATA AT 8 ;
20: OUTPUT RDAT. WDAT, UADR, PEND

Fl: 6K LR EEETEILEEISRIBEIEIINSEINTS

LINK TABLE
X1, X2 = FT1
= FT2
X3, X4, XS = FT3
X6, X7 X8 = FT4
X9, X110, Xt = FTS
X12 = FT6
X13 = FT7
X14 = FT8
X19, X298, X21 = FT1@
X22, X23. X24 = FT11
X2S, X26, X27 = FT12
X28., X29 = FTL3
X31 = FTLS
X32 = FT16
X33 = FTIT
X34 = FT18
X3S = FTS9
X36 H FT73
X37 = FT21
X38 = FTS8
X39 = FT23
X49. X4l = FT24
X45 . = FT2S
X42. X43. X44 = FT26
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WADR

X49,

XS

2

XS54
XS6

X6s

X78.

X79,

Xse

X8e.

X81
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(X28
(X48,
(X44

C(RDATA
4

(X48
(X49
(XS
(XSt
(XS7
(Xs8
(XS9
(XS3
(X61
(X62
(X63
(XSS
(X66
(X67
(X68
(X69.,
(X64
(X6S
(X1,
(X72,
(X74
(XTS
(X76
(X78
(X82
(XS2
(X84
(X8S,
(XS4
(X87
(X88,
(XS6
(X309
(X91,
§
(X833,
(X41
XT7
(X42
(X86
(X83

X9

1 X47

X680

X79
X73

X79

X8e

X8l
»X92

R e R R T SRR UL RS
[ RRVRY) -~



DODNONS W

[,
————— - -

128:

:
:
H
;

FUNCTION TABLE

0608848008000 000C000NSEEREEEEREN00BRESOSS

: FUNCTION
: FUNCTION

FUNCTION
FUNCTION
FUNCTION
FUNCTION

: FUNCTION
. FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
: FUNCTION
: FUNCTION
* FUNCTION
: FUNCTION

FUNCTION

: FUNCTION
: FUNCTION
. FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION

: FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
: FUNCTION
: FUNCTION
: FUNCTION
© FUNCTION
: FUNCTION
: FUNCTION
: FUNCTION
¢ FUNCTION
i FUNCTION
¢ FUNCTION
¢ FUNCTION
¢ FUNCTION
: FUNCTION
¢ FUNCTION
: FUNCTION
: FUNCTION
: FUNCTION

FUNCTION
FUNCTION

¢ FUNCTION

FUNCTION

¢ FUNCTION
¢ FUNCTION

FUNCTION

¢ FUNCTION
¢ FUNCTION

L T O T O O L T T T L T O T U L TR O TR T R T T T

LT O U O OO R U U O L L U O T (O O U T T T LR U T T TR U T LI L Ui

XY ),
T1. D
(1l 8,
Cls L.
(. D,
(QUEL. 1)
(QUE2, 1)
(QUE3., 1)
L, ),
(1. L.,
(1. 1,
A, L
(QUES, 1)
(QUEB., 1)
(QUET, 1)
(ZERO, 1)
(1. )
(QUE4, 1)
(3, 9)
(READ, @)
(URITE. 28H,
(HOST, @)
(CNOP ),
(3 )
(4. 0
MTBL )
(1TB2 )
(s, »
(QUE12, 1)
(QUEL3, 1)
(QUEL4. 1)
(L38L, 1)
(LSB2, 1)
(LsB3, D
(ANS,  2).
« )

135
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CNTGE
CNTGE
CNTGE

CNTGE
CNTGE
CNTGE

ROCYCS
ROCYCS

QUEUE
RDCYCS

RDCYCS
RDCYCS
ROCYCS
RDCYCS
RDCYCS
R0CYCS
RDCYCS
RDCYCS
RDCYCS

QUEUE

QUEUE
QUEUE
ROCYC3
COUNT

RDCYCS
RDCYCS

RDCYCS
1

RDCYCS
RDCYC3
ROCYCS

(T1. 1)
(R )
(V/R )
(H )
(R )
(VU/R )
(H )

(ONE., 1)
(LSB3, 1)

(QUEB, 1(6)
(T1, 1)

(MASK, 4)
(MASK. 4)
(MASK, &)
(SHTTBLL,4)
(SHTTBLL1.4)
(SHTTBL1.,4)

(LSBL, 4
(LSB2, 4)
(LSB3, 4)
(QUES, 4)
(QUELQ, 4)
(QUELL, 4)
(SHTTBLZ.4)
4 )
(THREE., 1)
(FOUR, 1)
(QHE, 1
(FH, 9]
(ONE, D
(ANS, 2)
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i
H
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¢ MEMORY
© NEMORY

MENORY

¢ MENORY

MEMORY

: NEMORY
: MEMORY
: MEMORY
: MEMORY
: MEMORY
: MEMORY
: MEMORY
: MEMORY
: MEMORY

. MEMORY

+ MEMORY
+ MEMORY
¢ MEMORY
¢ MEMORY
: MEMORY
© MEMORY
© MEMORY
¢ MEMORY
¢ MEMORY
: MEMORY
© MEMORY
© MEMORY
. MEMORY
¢ MEMORY
. MEMORY
© MEMORY

4

DATA MEMORY

$ee00000ssetetntttsstsssssITEEssREtERES
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-
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@
w
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NTB2

"

ANS
QUEL
QUE2
QUE3
QUE4
QUES
QUEB
QUET
QUE8
QUES
QUELD
QUELL
QUE!L2
QUE!L3
QUEL4
QUELS

L N L T T T T T T T T T T}
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B;IOIH' @3F00H.
12, 8,

9. 8,

e, e,

Q. 8,

[}

1

2

3

4

1S

@FH., @FH, QEH.
@BH, @BH., 0AH,
@7H, @TH, @6H.
03H, @3H, O2H,
@FH, @FH. @EH,
@BH, @BH. 0AH,
@7H, Q7H, @6H.
83H, Q3H. @2H.
QFH, @FH, @FH.
8FH, @FH, QDH,
QFH, @FH., OFH,
@FH, OFH, @DH.
@FH, OFH, @FH,
@TH, @7H. @SH.
OFH., OFH, @FH,
@7H, @7H., @SH.
AREA (2
AREA 1l
AREA 1
AREA 1l
AREA 1
AREA 1
AREA g}
AREA 1l
AREA (16
AREA 4
AREA 4
AREA 4
AREA 1
AREA 1l
AREA 1
AREA 1l

Q03FaH,

QEH,
BAH,
@6H,
Q2H,
QEH,
BAH,
Q6H,
Q2H,
QFH,
QDH,
QFH,
@0H,
QFH,
@SH,
@FH,
@SH,

R SRRV RVR VR URURURR

THAESESLAEEILINENEENEINTEIEIERERRNBNISIEILS

d
d

START

: START

i DATA
: DATA

END

EXEC CIPP,
EXEC CIPP,

LDA®.,
L3A0Q.

STARTD
STARTS
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)

QOH,
@SH,
@SH,
91H,
QDH,
Q9H,
QSH,
Q1H,
OFH,
QFH,
@BH,
OBH.,
QFH,
Q7H,
@BH,
83H,

80Q3FH

QCH,
Q8H,
Q4H,
Q0H.
ACH,
98H,
@4H,
80H:
QEH.
OCH.,
QAH.,
Q8H,
QEH.
04H,
0AH,
Q0%H



Appendix A
Image Memory Read/Write

The system addressed in this document performs image memory
access through the uPD9305. The contents of access tokens used

are listed in Table A-1. For further details consult the
"uPD9305 Users' Manual”.
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Table A-1
MN Values and Token Types

g:::“" MN ID Function Abbr

) 0000 P, uPD7281 output data to the host computer CPU

5001 JMN' 1D Image memory read #1 (RHAR1-selected)
111#nsw RHAR! assignment (Note 2)
0010 JMNT 1D Image memory read #2 (RHAR2-selected)
111 #»s%s RHAR2 assignment (Note 2)
for1 _MN’ 10’ _ | Image memory read #3 (RHAR3-selected) IMR
111 #%nn RHAR3 assignment
R JMNT 1D | Image memory read #A (RHARN-selected)
111 #%nn RHARN assignment (Note 2)
00000218 Image memory write MW
001 %#DIR | ier aadrese sontgamat for weite (selection registors ozaer) | [ MWHA
010 #» I_)_Ll_ Data sssignmeat for write (seleatios registee: DIRe1) IMWD
0101 011 ##DIR | 4 saaress assigumat for read (selestien register: D12et) | [MRHA
100w DIR Read-modify-write 1 RMW1
Read-modify-write 2 (Mask is selected wvith
101 ##DIR €3 bit of imge esmory RMW2
write data)

@ 110#%%a» DMA1 (Host -> uPD7281) DMA1
111 #%%n DMA2 (uPD7281 -> host) DMA2
00#»#DIR | 3se1f Object Load 1 SoL1

@ 0110 0 1#swDIR | Self Object Load 2 (Mi-interchanged) soLz
NP MN assignmant for Self Object Load SOLN

o111 Module number for uPD7281
(Valid when RHASELs1)
1000
1001
1010
4) 1011 Module numbers for uPD7281 PASS
1100
1101
1110
(8 1111 Deletion VANISH
Note 1: MN' indicates returned MN (MN' # 111).

ID' indicates returned ID.

Note 2: Becomes an image memory read token when RHASEL of the Mode

Register is 1.
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